首页 > 最新文献

Machine Intelligence Research最新文献

英文 中文
How Good is Google Bard’s Visual Understanding? An Empirical Study on Open Challenges b谷歌Bard的视觉理解有多好?开放性挑战的实证研究
4区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2023-07-27 DOI: 10.1007/s11633-023-1469-x
Haotong Qin, Ge-Peng Ji, Salman Khan, Deng-Ping Fan, F. Khan, L. Gool
{"title":"How Good is Google Bard’s Visual Understanding? An Empirical Study on Open Challenges","authors":"Haotong Qin, Ge-Peng Ji, Salman Khan, Deng-Ping Fan, F. Khan, L. Gool","doi":"10.1007/s11633-023-1469-x","DOIUrl":"https://doi.org/10.1007/s11633-023-1469-x","url":null,"abstract":"","PeriodicalId":29727,"journal":{"name":"Machine Intelligence Research","volume":"20 1","pages":"605 - 613"},"PeriodicalIF":0.0,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44455389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Transformer: A General Framework from Machine Translation to Others Transformer:从机器翻译到其他翻译的通用框架
4区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2023-06-02 DOI: 10.1007/s11633-022-1393-5
Yang Zhao, Jiajun Zhang, Chengqing Zong
{"title":"Transformer: A General Framework from Machine Translation to Others","authors":"Yang Zhao, Jiajun Zhang, Chengqing Zong","doi":"10.1007/s11633-022-1393-5","DOIUrl":"https://doi.org/10.1007/s11633-022-1393-5","url":null,"abstract":"","PeriodicalId":29727,"journal":{"name":"Machine Intelligence Research","volume":"20 1","pages":"514 - 538"},"PeriodicalIF":0.0,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41718075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Machine Learning Methods in Solving the Boolean Satisfiability Problem 解决布尔可满足性问题的机器学习方法
4区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2023-06-01 DOI: 10.1007/s11633-022-1396-2
Wenxuan Guo, Hui-Ling Zhen, Xijun Li, Wanqian Luo, Mingxuan Yuan, Yaohui Jin, Junchi Yan
This paper reviews the recent literature on solving the Boolean satisfiability problem (SAT), an archetypal $$cal{N}cal{P}$$ -complete problem, with the aid of machine learning (ML) techniques. Over the last decade, the machine learning society advances rapidly and surpasses human performance on several tasks. This trend also inspires a number of works that apply machine learning methods for SAT solving. In this survey, we examine the evolving ML SAT solvers from naive classifiers with handcrafted features to emerging end-to-end SAT solvers, as well as recent progress on combinations of existing conflict-driven clause learning (CDCL) and local search solvers with machine learning methods. Overall, solving SAT with machine learning is a promising yet challenging research topic. We conclude the limitations of current works and suggest possible future directions. The collected paper list is available at https://github.com/Thinklab-SJTU/awesome-ml4co .
本文综述了利用机器学习技术解决布尔可满足性问题(SAT)的最新文献,这是一个典型的$$cal{N}cal{P}$$完全问题。在过去的十年里,机器学习社会发展迅速,在一些任务上超过了人类的表现。这一趋势也激发了许多将机器学习方法应用于SAT求解的作品。在本调查中,我们研究了不断发展的ML SAT解算器,从具有手工制作特征的朴素分类器到新兴的端到端SAT解算器,以及现有冲突驱动子句学习(CDCL)和局部搜索解算器与机器学习方法相结合的最新进展。总的来说,用机器学习解决SAT是一个有前途但具有挑战性的研究课题。我们总结了当前工作的局限性,并提出了可能的未来方向。收集的论文清单可在https://github.com/Thinklab-SJTU/awesome-ml4co上获得。
{"title":"Machine Learning Methods in Solving the Boolean Satisfiability Problem","authors":"Wenxuan Guo, Hui-Ling Zhen, Xijun Li, Wanqian Luo, Mingxuan Yuan, Yaohui Jin, Junchi Yan","doi":"10.1007/s11633-022-1396-2","DOIUrl":"https://doi.org/10.1007/s11633-022-1396-2","url":null,"abstract":"This paper reviews the recent literature on solving the Boolean satisfiability problem (SAT), an archetypal $$cal{N}cal{P}$$ -complete problem, with the aid of machine learning (ML) techniques. Over the last decade, the machine learning society advances rapidly and surpasses human performance on several tasks. This trend also inspires a number of works that apply machine learning methods for SAT solving. In this survey, we examine the evolving ML SAT solvers from naive classifiers with handcrafted features to emerging end-to-end SAT solvers, as well as recent progress on combinations of existing conflict-driven clause learning (CDCL) and local search solvers with machine learning methods. Overall, solving SAT with machine learning is a promising yet challenging research topic. We conclude the limitations of current works and suggest possible future directions. The collected paper list is available at https://github.com/Thinklab-SJTU/awesome-ml4co .","PeriodicalId":29727,"journal":{"name":"Machine Intelligence Research","volume":"155 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135727200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Speech Emotion Recognition Using Cascaded Attention Network with Joint Loss for Discrimination of Confusions 基于联合损失级联注意网络的语音情绪识别
4区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2023-06-01 DOI: 10.1007/s11633-022-1356-x
Yang Liu, Haoqin Sun, Wenbo Guan, Yu-xin Xia, Zhen Zhao
{"title":"Speech Emotion Recognition Using Cascaded Attention Network with Joint Loss for Discrimination of Confusions","authors":"Yang Liu, Haoqin Sun, Wenbo Guan, Yu-xin Xia, Zhen Zhao","doi":"10.1007/s11633-022-1356-x","DOIUrl":"https://doi.org/10.1007/s11633-022-1356-x","url":null,"abstract":"","PeriodicalId":29727,"journal":{"name":"Machine Intelligence Research","volume":"20 1","pages":"595 - 604"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42414786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
OTB-morph: One-time Biometrics via Morphing OTB-morph:通过变形进行一次性生物识别
4区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2023-06-01 DOI: 10.1007/s11633-023-1432-x
Mahdi Ghafourian, Julian Fierrez, Ruben Vera-Rodriguez, Aythami Morales, Ignacio Serna
Cancelable biometrics are a group of techniques to transform the input biometric to an irreversible feature intentionally using a transformation function and usually a key in order to provide security and privacy in biometric recognition systems. This transformation is repeatable enabling subsequent biometric comparisons. This paper introduces a new idea to be exploited as a transformation function for cancelable biometrics aimed at protecting templates against iterative optimization attacks. Our proposed scheme is based on time-varying keys (random biometrics in our case) and morphing transformations. An experimental implementation of the proposed scheme is given for face biometrics. The results confirm that the proposed approach is able to withstand leakage attacks while improving the recognition performance.
可取消生物特征是指在生物特征识别系统中,为了保证安全性和隐私性,利用转换函数和密钥有意地将输入的生物特征转换为不可逆特征的一组技术。这种转换是可重复的,可以进行后续的生物识别比较。本文介绍了一种新的思想,作为可取消生物特征识别的转换函数,旨在保护模板免受迭代优化攻击。我们提出的方案基于时变密钥(在我们的例子中是随机生物识别)和变形转换。给出了该方法在人脸生物识别中的实验实现。结果表明,该方法在抵御泄漏攻击的同时提高了识别性能。
{"title":"OTB-morph: One-time Biometrics via Morphing","authors":"Mahdi Ghafourian, Julian Fierrez, Ruben Vera-Rodriguez, Aythami Morales, Ignacio Serna","doi":"10.1007/s11633-023-1432-x","DOIUrl":"https://doi.org/10.1007/s11633-023-1432-x","url":null,"abstract":"Cancelable biometrics are a group of techniques to transform the input biometric to an irreversible feature intentionally using a transformation function and usually a key in order to provide security and privacy in biometric recognition systems. This transformation is repeatable enabling subsequent biometric comparisons. This paper introduces a new idea to be exploited as a transformation function for cancelable biometrics aimed at protecting templates against iterative optimization attacks. Our proposed scheme is based on time-varying keys (random biometrics in our case) and morphing transformations. An experimental implementation of the proposed scheme is given for face biometrics. The results confirm that the proposed approach is able to withstand leakage attacks while improving the recognition performance.","PeriodicalId":29727,"journal":{"name":"Machine Intelligence Research","volume":"107 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135727202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Federated Learning on Multimodal Data: A Comprehensive Survey 多模式数据的联合学习:一项综合调查
4区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2023-06-01 DOI: 10.1007/s11633-022-1398-0
Yi-Ming Lin, Yuan Gao, Maoguo Gong, Si-Jia Zhang, Yuanbo Zhang, Zhi-Yuan Li
{"title":"Federated Learning on Multimodal Data: A Comprehensive Survey","authors":"Yi-Ming Lin, Yuan Gao, Maoguo Gong, Si-Jia Zhang, Yuanbo Zhang, Zhi-Yuan Li","doi":"10.1007/s11633-022-1398-0","DOIUrl":"https://doi.org/10.1007/s11633-022-1398-0","url":null,"abstract":"","PeriodicalId":29727,"journal":{"name":"Machine Intelligence Research","volume":"1 1","pages":"1 - 15"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46703469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Correction to: YOLOP: You Only Look Once for Panoptic Driving Perception 修正:yolo:你只看一次Panoptic Driving Perception
4区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2023-05-27 DOI: 10.1007/s11633-023-1452-6
Dong Wu, Man-Wen Liao, Wei-Tian Zhang, Xing-Gang Wang, Xiang Bai, Wen-Qing Cheng, Wen-Yu Liu
{"title":"Correction to: YOLOP: You Only Look Once for Panoptic Driving Perception","authors":"Dong Wu, Man-Wen Liao, Wei-Tian Zhang, Xing-Gang Wang, Xiang Bai, Wen-Qing Cheng, Wen-Yu Liu","doi":"10.1007/s11633-023-1452-6","DOIUrl":"https://doi.org/10.1007/s11633-023-1452-6","url":null,"abstract":"","PeriodicalId":29727,"journal":{"name":"Machine Intelligence Research","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135950401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MVContrast: Unsupervised Pretraining for Multi-view 3D Object Recognition MVContrast:多视图3D物体识别的无监督预训练
4区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2023-05-10 DOI: 10.1007/s11633-023-1430-z
Lu Wang, Hongbin Xu, Wenxiong Kang
{"title":"MVContrast: Unsupervised Pretraining for Multi-view 3D Object Recognition","authors":"Lu Wang, Hongbin Xu, Wenxiong Kang","doi":"10.1007/s11633-023-1430-z","DOIUrl":"https://doi.org/10.1007/s11633-023-1430-z","url":null,"abstract":"","PeriodicalId":29727,"journal":{"name":"Machine Intelligence Research","volume":" ","pages":"1-12"},"PeriodicalIF":0.0,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44730506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Cross-modal Contrastive Learning for Generalizable and Efficient Image-text Retrieval 基于跨模态对比学习的通用高效图像文本检索
4区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2023-05-03 DOI: 10.1007/s11633-022-1386-4
Haoyu Lu, Yuqi Huo, Mingyu Ding, Nanyi Fei, Zhiwu Lu
{"title":"Cross-modal Contrastive Learning for Generalizable and Efficient Image-text Retrieval","authors":"Haoyu Lu, Yuqi Huo, Mingyu Ding, Nanyi Fei, Zhiwu Lu","doi":"10.1007/s11633-022-1386-4","DOIUrl":"https://doi.org/10.1007/s11633-022-1386-4","url":null,"abstract":"","PeriodicalId":29727,"journal":{"name":"Machine Intelligence Research","volume":" ","pages":"1-14"},"PeriodicalIF":0.0,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46266465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Deep Learning-based Moving Object Segmentation: Recent Progress and Research Prospects 基于深度学习的运动目标分割研究进展与展望
4区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2023-04-20 DOI: 10.1007/s11633-022-1378-4
Rui Jiang, Ruixiang Zhu, Hu Su, Yinlin Li, Yuan Xie, Wei Zou
{"title":"Deep Learning-based Moving Object Segmentation: Recent Progress and Research Prospects","authors":"Rui Jiang, Ruixiang Zhu, Hu Su, Yinlin Li, Yuan Xie, Wei Zou","doi":"10.1007/s11633-022-1378-4","DOIUrl":"https://doi.org/10.1007/s11633-022-1378-4","url":null,"abstract":"","PeriodicalId":29727,"journal":{"name":"Machine Intelligence Research","volume":"1 1","pages":"1-35"},"PeriodicalIF":0.0,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49668721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
期刊
Machine Intelligence Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1