首页 > 最新文献

ACS Materials Au最新文献

英文 中文
Functionalized Imidazolium Ether-Free Polymer Backbones with Ion Transport Channels and Catalytic Activity. 具有离子传递通道和催化活性的功能化咪唑醚无聚合物骨架。
IF 5.7 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-03-27 eCollection Date: 2025-05-14 DOI: 10.1021/acsmaterialsau.4c00154
Bryan A Corzo, Hugo Hernández-Martínez, Eugenia Josefina Aldeco-Pérez, Jorge Cárdenas, Víctor Lara, Lilian I Olvera

Novel ether-free bond polymer backbones were synthesized through polycondensation in a superacid medium by using p-terphenyl and 4-(1H-imidazol-1-yl)benzaldehyde. The presence of imidazolium groups enabled further modifications through a highly efficient nucleophilic substitution reaction introducing cationic sites essential for anionic transport. Characterization by NMR and FTIR analyses confirmed the structures and the complete functionalization of the base polymer. Critical properties for potential anion exchange membrane applications, including water uptake, ion exchange capacity, ion conductivity, morphology, and thermal and mechanical stabilities were investigated. Results indicated that these polymers form stable ion transport channels, with the formation of distinctive hydrophilic/hydrophobic microphase separation in the membranes observed through AFM, HR-TEM, and SAXS analyses. This structural configuration of the membranes exhibited high hydroxide conductivities of 61.33 and 80.33 mS/cm at 80 °C for 1AIM (quaternization with iodomethane) and 1ABPTA (quaternization with (3-bromopropyl)trimethylammonium bromide), respectively, with a thermal stability up to 240 °C, underscoring their suitability for electrochemical applications. Additionally, an organometallic polymer was successfully synthesized from the 1ABPTA polymer due to the presence of an imidazolium salt, N-heterocyclic carbene (NHC) ligand precursor. SEM images displayed the homogeneous distribution of metal atoms, and XPS spectra confirmed the formation of the C-M bond. The material obtained was utilized as a heterogeneous catalyst in a C-C Suzuki-Miyaura coupling reaction, achieving catalytic conversion percentages of 70% and 60% for the first and second cycles, respectively.

以对terphenyl和4-(1h -咪唑-1-基)苯甲醛为原料,在超强酸介质中缩聚合成了新型无醚键聚合物骨架。咪唑基团的存在使得通过高效的亲核取代反应引入阴离子运输所必需的阳离子位点进一步修饰。核磁共振和红外光谱分析证实了该聚合物的结构和完全功能化。研究了潜在阴离子交换膜应用的关键性能,包括吸水性、离子交换容量、离子电导率、形态、热稳定性和机械稳定性。结果表明,这些聚合物形成了稳定的离子传输通道,并通过AFM、HR-TEM和SAXS分析在膜中形成了独特的亲疏水微相分离。该膜的结构构型在80°C时,1AIM(与碘甲烷季铵化)和1ABPTA(与(3-溴丙基)三甲基溴化铵季铵化)的氢氧化物电导率分别为61.33和80.33 mS/cm,热稳定性高达240°C,强调了它们的电化学应用适应性。此外,由于咪唑盐n -杂环碳(NHC)配体前体的存在,成功地由1ABPTA聚合物合成了有机金属聚合物。SEM图像显示金属原子分布均匀,XPS光谱证实了C-M键的形成。该材料作为非均相催化剂用于C-C Suzuki-Miyaura偶联反应,第一次和第二次循环的催化转化率分别达到70%和60%。
{"title":"Functionalized Imidazolium Ether-Free Polymer Backbones with Ion Transport Channels and Catalytic Activity.","authors":"Bryan A Corzo, Hugo Hernández-Martínez, Eugenia Josefina Aldeco-Pérez, Jorge Cárdenas, Víctor Lara, Lilian I Olvera","doi":"10.1021/acsmaterialsau.4c00154","DOIUrl":"10.1021/acsmaterialsau.4c00154","url":null,"abstract":"<p><p>Novel ether-free bond polymer backbones were synthesized through polycondensation in a superacid medium by using <i>p</i>-terphenyl and 4-(1<i>H</i>-imidazol-1-yl)benzaldehyde. The presence of imidazolium groups enabled further modifications through a highly efficient nucleophilic substitution reaction introducing cationic sites essential for anionic transport. Characterization by NMR and FTIR analyses confirmed the structures and the complete functionalization of the base polymer. Critical properties for potential anion exchange membrane applications, including water uptake, ion exchange capacity, ion conductivity, morphology, and thermal and mechanical stabilities were investigated. Results indicated that these polymers form stable ion transport channels, with the formation of distinctive hydrophilic/hydrophobic microphase separation in the membranes observed through AFM, HR-TEM, and SAXS analyses. This structural configuration of the membranes exhibited high hydroxide conductivities of 61.33 and 80.33 mS/cm at 80 °C for 1AIM (quaternization with iodomethane) and 1ABPTA (quaternization with (3-bromopropyl)trimethylammonium bromide), respectively, with a thermal stability up to 240 °C, underscoring their suitability for electrochemical applications. Additionally, an organometallic polymer was successfully synthesized from the 1ABPTA polymer due to the presence of an imidazolium salt, <i>N</i>-heterocyclic carbene (NHC) ligand precursor. SEM images displayed the homogeneous distribution of metal atoms, and XPS spectra confirmed the formation of the C-M bond. The material obtained was utilized as a heterogeneous catalyst in a C-C Suzuki-Miyaura coupling reaction, achieving catalytic conversion percentages of 70% and 60% for the first and second cycles, respectively.</p>","PeriodicalId":29798,"journal":{"name":"ACS Materials Au","volume":"5 3","pages":"508-521"},"PeriodicalIF":5.7,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12082359/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144094957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Continuous Sustainable Production of Biobased Multicomponent Enhanced Resin for SLA 3D Printing. 用于SLA 3D打印的生物基多组分增强树脂的持续可持续生产。
IF 5.7 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-03-20 eCollection Date: 2025-05-14 DOI: 10.1021/acsmaterialsau.5c00014
Vojtěch Jašek, Otakar Bartoš, Veronika Lavrinčíková, Jan Fučík, Silvestr Figalla, Eliška Kameníková, Radek Přikryl

This work focuses on biobased reactive diluents' synthesis, continuing with optimized oil-based resin precursor production. Our approach introduces vanillin methacrylate (VanMMA), cinnamyl methacrylate (CinMMA), and vanillyl dimethacrylate (VanDiMMA) synthesis using methacrylic anhydride. The introduced approach involves an innovative and available catalyst, potassium acetate, which possesses much suitable potential compared with the usually used 4-dimethylaminopyridine (DMAP). Moreover, we separated the formed secondary product, methacrylic acid (MA), and used it to modify rapeseed oil to prepare a curable thermoset. All synthesized products were structurally verified via complex cross-analysis (NMR, ESI-MS, and FTIR). The reactive systems were mixed to form a multicomponent mixture appropriate for stereolithography (SLA) and 3D printing. It was found that VanDiMMA exhibited comparable diluting properties to the commercially available and used compound, isobornyl methacrylate (IBOMA), while achieving better mechanical, thermo-mechanical, and thermal properties than IBOMA. VanDiMMA-containing SLA resin reached a tensile strength of 12.7 ± 0.3 MPa, a flexural strength of 16.8 ± 0.4 MPa, a storage modulus of 570 MPa at 30 °C, a glass-transition temperature of 83.7 °C, and the heat-resistant index of 169.5 °C.

这项工作的重点是生物基反应性稀释剂的合成,继续优化油基树脂前驱体的生产。我们的方法介绍了用甲基丙烯酸酐合成甲基丙烯酸香兰素(VanMMA)、甲基丙烯酸肉桂酯(CinMMA)和二甲丙烯酸香兰素(VanDiMMA)。所介绍的方法涉及一种创新的和可用的催化剂,醋酸钾,与通常使用的4-二甲氨基吡啶(DMAP)相比,它具有更合适的潜力。此外,我们分离了形成的二次产物甲基丙烯酸(MA),并将其用于改性菜籽油,制备了可固化的热固性材料。所有合成产物通过复杂交叉分析(NMR, ESI-MS和FTIR)进行结构验证。将反应体系混合形成适合于立体光刻(SLA)和3D打印的多组分混合物。研究发现,VanDiMMA具有与市售和使用的化合物甲基丙烯酸异硼酸酯(IBOMA)相当的稀释性能,同时具有比IBOMA更好的机械、热机械和热性能。含vandimma的SLA树脂在30℃下的拉伸强度为12.7±0.3 MPa,弯曲强度为16.8±0.4 MPa,玻璃化转变温度为83.7℃,存储模量为570 MPa,耐热指数为169.5℃。
{"title":"Continuous Sustainable Production of Biobased Multicomponent Enhanced Resin for SLA 3D Printing.","authors":"Vojtěch Jašek, Otakar Bartoš, Veronika Lavrinčíková, Jan Fučík, Silvestr Figalla, Eliška Kameníková, Radek Přikryl","doi":"10.1021/acsmaterialsau.5c00014","DOIUrl":"10.1021/acsmaterialsau.5c00014","url":null,"abstract":"<p><p>This work focuses on biobased reactive diluents' synthesis, continuing with optimized oil-based resin precursor production. Our approach introduces vanillin methacrylate (VanMMA), cinnamyl methacrylate (CinMMA), and vanillyl dimethacrylate (VanDiMMA) synthesis using methacrylic anhydride. The introduced approach involves an innovative and available catalyst, potassium acetate, which possesses much suitable potential compared with the usually used 4-dimethylaminopyridine (DMAP). Moreover, we separated the formed secondary product, methacrylic acid (MA), and used it to modify rapeseed oil to prepare a curable thermoset. All synthesized products were structurally verified via complex cross-analysis (NMR, ESI-MS, and FTIR). The reactive systems were mixed to form a multicomponent mixture appropriate for stereolithography (SLA) and 3D printing. It was found that VanDiMMA exhibited comparable diluting properties to the commercially available and used compound, isobornyl methacrylate (IBOMA), while achieving better mechanical, thermo-mechanical, and thermal properties than IBOMA. VanDiMMA-containing SLA resin reached a tensile strength of 12.7 ± 0.3 MPa, a flexural strength of 16.8 ± 0.4 MPa, a storage modulus of 570 MPa at 30 °C, a glass-transition temperature of 83.7 °C, and the heat-resistant index of 169.5 °C.</p>","PeriodicalId":29798,"journal":{"name":"ACS Materials Au","volume":"5 3","pages":"580-592"},"PeriodicalIF":5.7,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12082353/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144094950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nickel-Doped Titanium Oxide with the Rutile Structure for High-Performance Sodium Storage. 具有金红石结构的掺镍氧化钛用于高性能钠存储。
IF 5.7 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-03-18 eCollection Date: 2025-05-14 DOI: 10.1021/acsmaterialsau.5c00008
Hiroyuki Usui, Yasuhiro Domi, Yuma Sadamori, Ryuto Tanaka, Takeo Hoshi, Toshiyuki Tanaka, Hiroki Sakaguchi

We prepared rutile TiO2 particles doped with Ni2+, Al3+, Nb5+, and Ta5+ by hydrothermal synthesis as anode materials for Na-ion batteries and investigated the effect of doping cation valence on the anode performance and the Na+ diffusion behavior. In situ X-ray diffraction analyses confirmed the insertion and extraction of Na+ while maintaining the rutile structure. Among the various doped TiO2 electrodes, the Ni-doped TiO2 one exhibited the best anode performance with a high reversible capacity of 135 mA h g-1 even at 50C (16.75 A g-1). This electrode showed a very long cycle life: the capacity of 225 mA h g-1 could be attained even after 10,000 cycles. The first-principles calculation suggested the formation of impurity levels in the forbidden band of TiO2 by various cation dopings. Electrochemical impedance analyses revealed that the Ni-doped TiO2 electrode showed lower charge-transfer resistance (R ct) compared with other cation-doped TiO2 electrodes. Measurements using the galvanostatic intermittent titration technique found that the Na+ diffusion coefficient (D Na+) of Ni-doped TiO2 has a higher value of 1.2 × 10-13 cm2 s-1 compared with D Na+ of 4.8 × 10-14 cm2 s-1 in the case of undoped TiO2. The first-principle calculation supported this result: the Ni2+ doping could reduce the activation energy required for Na+ diffusion in rutile TiO2. Therefore, we suggest that an easier migration of Na+ was promoted in the Ni-doped TiO2, effectively enhancing the charge-discharge capacity and the cycle life. Although rutile TiO2 as an anode has had a difficult history, this study proved that impurity element doping such as Ni2+ can transform it into a very attractive anode material.

采用水热合成法制备了掺杂Ni2+、Al3+、Nb5+和Ta5+的金红石型TiO2颗粒作为Na离子电池的负极材料,并研究了掺杂阳离子价对阳极性能和Na+扩散行为的影响。原位x射线衍射分析证实了Na+的插入和提取,同时保持了金红石结构。在各种掺杂TiO2电极中,ni掺杂TiO2电极表现出最好的阳极性能,即使在50C (16.75 a g-1)下也具有135 mA h g-1的高可逆容量。该电极显示出非常长的循环寿命:即使经过10,000次循环,也可以达到225 mA h g-1的容量。第一性原理计算表明,不同的阳离子掺杂会在TiO2禁带中形成杂质能级。电化学阻抗分析表明,与其他阳离子掺杂TiO2电极相比,ni掺杂TiO2电极具有更低的电荷转移电阻(R ct)。采用恒流间歇滴定技术测量发现,ni掺杂TiO2的Na+扩散系数(D Na+)为1.2 × 10-13 cm2 s-1,而未掺杂TiO2的D Na+为4.8 × 10-14 cm2 s-1。第一性原理计算支持这一结果:Ni2+掺杂可以降低Na+在金红石型TiO2中扩散所需的活化能。因此,我们认为在ni掺杂的TiO2中促进Na+更容易迁移,有效地提高了充放电容量和循环寿命。虽然金红石型TiO2作为阳极有着艰难的历史,但本研究证明,掺杂Ni2+等杂质元素可以将其转变为非常有吸引力的阳极材料。
{"title":"Nickel-Doped Titanium Oxide with the Rutile Structure for High-Performance Sodium Storage.","authors":"Hiroyuki Usui, Yasuhiro Domi, Yuma Sadamori, Ryuto Tanaka, Takeo Hoshi, Toshiyuki Tanaka, Hiroki Sakaguchi","doi":"10.1021/acsmaterialsau.5c00008","DOIUrl":"10.1021/acsmaterialsau.5c00008","url":null,"abstract":"<p><p>We prepared rutile TiO<sub>2</sub> particles doped with Ni<sup>2+</sup>, Al<sup>3+</sup>, Nb<sup>5+</sup>, and Ta<sup>5+</sup> by hydrothermal synthesis as anode materials for Na-ion batteries and investigated the effect of doping cation valence on the anode performance and the Na<sup>+</sup> diffusion behavior. <i>In situ</i> X-ray diffraction analyses confirmed the insertion and extraction of Na<sup>+</sup> while maintaining the rutile structure. Among the various doped TiO<sub>2</sub> electrodes, the Ni-doped TiO<sub>2</sub> one exhibited the best anode performance with a high reversible capacity of 135 mA h g<sup>-1</sup> even at 50<i>C</i> (16.75 A g<sup>-1</sup>). This electrode showed a very long cycle life: the capacity of 225 mA h g<sup>-1</sup> could be attained even after 10,000 cycles. The first-principles calculation suggested the formation of impurity levels in the forbidden band of TiO<sub>2</sub> by various cation dopings. Electrochemical impedance analyses revealed that the Ni-doped TiO<sub>2</sub> electrode showed lower charge-transfer resistance (<i>R</i> <sub>ct</sub>) compared with other cation-doped TiO<sub>2</sub> electrodes. Measurements using the galvanostatic intermittent titration technique found that the Na<sup>+</sup> diffusion coefficient (<i>D</i> <sub>Na+</sub>) of Ni-doped TiO<sub>2</sub> has a higher value of 1.2 × 10<sup>-13</sup> cm<sup>2</sup> s<sup>-1</sup> compared with <i>D</i> <sub>Na+</sub> of 4.8 × 10<sup>-14</sup> cm<sup>2</sup> s<sup>-1</sup> in the case of undoped TiO<sub>2</sub>. The first-principle calculation supported this result: the Ni<sup>2+</sup> doping could reduce the activation energy required for Na<sup>+</sup> diffusion in rutile TiO<sub>2</sub>. Therefore, we suggest that an easier migration of Na<sup>+</sup> was promoted in the Ni-doped TiO<sub>2</sub>, effectively enhancing the charge-discharge capacity and the cycle life. Although rutile TiO<sub>2</sub> as an anode has had a difficult history, this study proved that impurity element doping such as Ni<sup>2+</sup> can transform it into a very attractive anode material.</p>","PeriodicalId":29798,"journal":{"name":"ACS Materials Au","volume":"5 3","pages":"558-568"},"PeriodicalIF":5.7,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12082360/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144095020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IF 5.7 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-03-12
{"title":"","authors":"","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":29798,"journal":{"name":"ACS Materials Au","volume":"5 2","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":5.7,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/mgv005i002_1910209","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144430893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IF 5.7 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-03-12
Pavel Ludačka, Vojtěch Liška, Jan Sýkora, Pavel Kubát and Jiří Mosinger*, 
{"title":"","authors":"Pavel Ludačka,&nbsp;Vojtěch Liška,&nbsp;Jan Sýkora,&nbsp;Pavel Kubát and Jiří Mosinger*,&nbsp;","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":29798,"journal":{"name":"ACS Materials Au","volume":"5 2","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":5.7,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsmaterialsau.4c00137","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144430900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IF 5.7 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-03-12
Stephanie L. Brock*, Maksym V. Kovalenko and Mary Ann Meador, 
{"title":"","authors":"Stephanie L. Brock*,&nbsp;Maksym V. Kovalenko and Mary Ann Meador,&nbsp;","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":29798,"journal":{"name":"ACS Materials Au","volume":"5 2","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":5.7,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsmaterialsau.5c00020","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144430887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IF 5.7 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-03-12
Egle Ezerskyte, Greta Butkiene, Arturas Katelnikovas and Vaidas Klimkevicius*, 
{"title":"","authors":"Egle Ezerskyte,&nbsp;Greta Butkiene,&nbsp;Arturas Katelnikovas and Vaidas Klimkevicius*,&nbsp;","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":29798,"journal":{"name":"ACS Materials Au","volume":"5 2","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":5.7,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsmaterialsau.4c00151","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144430884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IF 5.7 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-03-12
Mario Aparicio*, Jadra Mosa, Miguel Gómez-Herrero, Zainab Abd Al-Jaleel, Jennifer Guzman, Mihaela Jitianu, Lisa C. Klein and Andrei Jitianu*, 
{"title":"","authors":"Mario Aparicio*,&nbsp;Jadra Mosa,&nbsp;Miguel Gómez-Herrero,&nbsp;Zainab Abd Al-Jaleel,&nbsp;Jennifer Guzman,&nbsp;Mihaela Jitianu,&nbsp;Lisa C. Klein and Andrei Jitianu*,&nbsp;","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":29798,"journal":{"name":"ACS Materials Au","volume":"5 2","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":5.7,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsmaterialsau.4c00170","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144430885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IF 5.7 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-03-12
Cunyuan Gao,  and , Bin Cai*, 
{"title":"","authors":"Cunyuan Gao,&nbsp; and ,&nbsp;Bin Cai*,&nbsp;","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":29798,"journal":{"name":"ACS Materials Au","volume":"5 2","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":5.7,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsmaterialsau.4c00092","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144430892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IF 5.7 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-03-12
{"title":"","authors":"","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":29798,"journal":{"name":"ACS Materials Au","volume":"5 2","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":5.7,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/mgv005i002_1910210","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144430898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
ACS Materials Au
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1