首页 > 最新文献

Acta Infologica最新文献

英文 中文
Usability Evaluation of the Online Skill Assessment Tool 在线技能评估工具的可用性评估
Pub Date : 2022-06-09 DOI: 10.26650/acin.1077400
Merve Yildiz, Muhammet Berigel, F. Kalyoncu, Özlem Özgenç Keleş
{"title":"Usability Evaluation of the Online Skill Assessment Tool","authors":"Merve Yildiz, Muhammet Berigel, F. Kalyoncu, Özlem Özgenç Keleş","doi":"10.26650/acin.1077400","DOIUrl":"https://doi.org/10.26650/acin.1077400","url":null,"abstract":"","PeriodicalId":309427,"journal":{"name":"Acta Infologica","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131207171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mathematical Modeling and Optimization of Supply Chain for Bioethanol 生物乙醇供应链的数学建模与优化
Pub Date : 2022-05-31 DOI: 10.26650/acin.817655
Y. Dzhelil, T. Mihalev, B. Ivanov, D. Dobrudzhaliev
{"title":"Mathematical Modeling and Optimization of Supply Chain for Bioethanol","authors":"Y. Dzhelil, T. Mihalev, B. Ivanov, D. Dobrudzhaliev","doi":"10.26650/acin.817655","DOIUrl":"https://doi.org/10.26650/acin.817655","url":null,"abstract":"","PeriodicalId":309427,"journal":{"name":"Acta Infologica","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126950123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Otomatik Gerilim Regülatör Sistemi için Deniz Yırtıcıları Algoritmasının Performans Analizi
Pub Date : 2022-05-16 DOI: 10.26650/acin.1026494
Zeynep Garip, MuratErhan Çimen, A. Boz
In this study, the emerging, novel marine predators algorithm is proposed to adjust the proportional–integral– derivative controller of the automatic voltage regulator system. With the proposed algorithm, this study aimed to minimize the maximum percent excess of the terminal voltage, settling time, rise time, and steady-state error and improve the transient response of the automatic voltage regulator system with an optimal proportional–integral– derivative controller. The integral of squared error, integral of weighted squared error, squared integral of time, and Zwe-Lee Gaing objective functions were used to set the controller parameters. The performance of the proportional–integral–derivative controller based on the marine predators algorithm was compared with those of the proportional–integral–derivative controllers adapted by different metaheuristic algorithms using various objective functions suggested in the literature. These analyses were conducted using analysis methods such as transient response, root locus, and robustness. The simulation results show better performance in terms of the settling time, over-peak, and stability of the proportional–integral–derivative-controlled automatic voltage regulator system tuned with the marine predators algorithm.
在本研究中,提出了一种新兴的新型海洋掠食者算法来调整自动电压调节系统的比例-积分-导数控制器。本文提出的算法旨在通过最优比例-积分-导数控制器,最大限度地减少终端电压、稳定时间、上升时间和稳态误差的最大超额百分比,并改善自动调压系统的瞬态响应。利用平方误差积分、加权平方误差积分、时间平方积分和Zwe-Lee Gaing目标函数设定控制器参数。比较了基于海洋捕食者算法的比例-积分-导数控制器与采用不同目标函数的不同元启发式算法的比例-积分-导数控制器的性能。这些分析采用了瞬态响应、根轨迹和鲁棒性等分析方法。仿真结果表明,采用海洋掠食者算法调谐的比例-积分-导数控制自动调压系统在稳定时间、过峰和稳定性方面都有较好的性能。
{"title":"Otomatik Gerilim Regülatör Sistemi için Deniz Yırtıcıları Algoritmasının Performans Analizi","authors":"Zeynep Garip, MuratErhan Çimen, A. Boz","doi":"10.26650/acin.1026494","DOIUrl":"https://doi.org/10.26650/acin.1026494","url":null,"abstract":"In this study, the emerging, novel marine predators algorithm is proposed to adjust the proportional–integral– derivative controller of the automatic voltage regulator system. With the proposed algorithm, this study aimed to minimize the maximum percent excess of the terminal voltage, settling time, rise time, and steady-state error and improve the transient response of the automatic voltage regulator system with an optimal proportional–integral– derivative controller. The integral of squared error, integral of weighted squared error, squared integral of time, and Zwe-Lee Gaing objective functions were used to set the controller parameters. The performance of the proportional–integral–derivative controller based on the marine predators algorithm was compared with those of the proportional–integral–derivative controllers adapted by different metaheuristic algorithms using various objective functions suggested in the literature. These analyses were conducted using analysis methods such as transient response, root locus, and robustness. The simulation results show better performance in terms of the settling time, over-peak, and stability of the proportional–integral–derivative-controlled automatic voltage regulator system tuned with the marine predators algorithm.","PeriodicalId":309427,"journal":{"name":"Acta Infologica","volume":"66 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128643175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Metin Madenciliği Yöntemiyle Dijital Katılım Analizi ve 2017 Türkiye Sosyal Medya Referandumu
Pub Date : 2022-05-16 DOI: 10.26650/acin.1078857
Serkan Savaş
{"title":"Metin Madenciliği Yöntemiyle Dijital Katılım Analizi ve 2017 Türkiye Sosyal Medya Referandumu","authors":"Serkan Savaş","doi":"10.26650/acin.1078857","DOIUrl":"https://doi.org/10.26650/acin.1078857","url":null,"abstract":"","PeriodicalId":309427,"journal":{"name":"Acta Infologica","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129020970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Empirical Study on Strategic Alignment of Enterprise Systems 企业系统战略结盟的实证研究
Pub Date : 2022-04-28 DOI: 10.26650/acin.1079619
Nazim Taskin, Jacques C. Verville, M. Yu
{"title":"An Empirical Study on Strategic Alignment of Enterprise Systems","authors":"Nazim Taskin, Jacques C. Verville, M. Yu","doi":"10.26650/acin.1079619","DOIUrl":"https://doi.org/10.26650/acin.1079619","url":null,"abstract":"","PeriodicalId":309427,"journal":{"name":"Acta Infologica","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131536463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Derin Öğrenme (CNN, RNN, LSTM, GRU) Kullanarak Protein İkincil Yapı Tahmini
Pub Date : 2022-04-28 DOI: 10.26650/acin.1008075
Ezgi Çakmak, İ. Selvi̇
Proteins play a crucial function in the biological processes of living organisms. Knowing the function of the protein offers significant insight into future biological and medical research. Since a protein’s shape determines its function, it is important to understand the protein’s 3D structure. Although experimental methods such as X-ray crystallography and nuclear magnetic resonance (NMR) have been used to examine the shape of proteins, so far the results have been insufficient. As a result, predicting the 3D structure of proteins is crucial. Determining the 3D structure of a protein from its primary structure is challenging. Therefore, predicting the protein secondary structure becomes important for studying its structure and function. Many emerging methods, including machine learning, as well as deep learning, have been used to predict the secondary structure of proteins and comprise a crucial part of Structural Bioinformatics. The goal of this study is to compare the results generated by predictive models that were created using the four most frequently utilized deep learning methods: convolutional neural networks (CNN), recurrent neural networks (RNN), long short term memory networks (LSTM), and gated recurrent units (GRU). The CB513 dataset was used to train and test these models, and performance evaluation metrics viz. accuracy, f1 score, recall, and precision were applied. The CNN, RNN, LSTM, and GRU models had an accuracy of 82.54%, 82.06%, 81.1%, and 81.48%, respectively.
蛋白质在生物体的生物过程中起着至关重要的作用。了解这种蛋白质的功能为未来的生物学和医学研究提供了重要的见解。由于蛋白质的形状决定了它的功能,因此了解蛋白质的三维结构非常重要。尽管x射线晶体学和核磁共振(NMR)等实验方法已被用于检查蛋白质的形状,但到目前为止,结果还不够充分。因此,预测蛋白质的三维结构是至关重要的。从蛋白质的初级结构中确定蛋白质的三维结构是具有挑战性的。因此,预测蛋白质二级结构对研究其结构和功能具有重要意义。许多新兴的方法,包括机器学习和深度学习,已被用于预测蛋白质的二级结构,并构成结构生物信息学的重要组成部分。本研究的目的是比较使用四种最常用的深度学习方法(卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络(LSTM)和门控循环单元(GRU))创建的预测模型产生的结果。使用CB513数据集对这些模型进行训练和测试,并应用了准确性、f1分数、召回率和精度等性能评估指标。CNN、RNN、LSTM和GRU模型的准确率分别为82.54%、82.06%、81.1%和81.48%。
{"title":"Derin Öğrenme (CNN, RNN, LSTM, GRU) Kullanarak Protein İkincil Yapı Tahmini","authors":"Ezgi Çakmak, İ. Selvi̇","doi":"10.26650/acin.1008075","DOIUrl":"https://doi.org/10.26650/acin.1008075","url":null,"abstract":"Proteins play a crucial function in the biological processes of living organisms. Knowing the function of the protein offers significant insight into future biological and medical research. Since a protein’s shape determines its function, it is important to understand the protein’s 3D structure. Although experimental methods such as X-ray crystallography and nuclear magnetic resonance (NMR) have been used to examine the shape of proteins, so far the results have been insufficient. As a result, predicting the 3D structure of proteins is crucial. Determining the 3D structure of a protein from its primary structure is challenging. Therefore, predicting the protein secondary structure becomes important for studying its structure and function. Many emerging methods, including machine learning, as well as deep learning, have been used to predict the secondary structure of proteins and comprise a crucial part of Structural Bioinformatics. The goal of this study is to compare the results generated by predictive models that were created using the four most frequently utilized deep learning methods: convolutional neural networks (CNN), recurrent neural networks (RNN), long short term memory networks (LSTM), and gated recurrent units (GRU). The CB513 dataset was used to train and test these models, and performance evaluation metrics viz. accuracy, f1 score, recall, and precision were applied. The CNN, RNN, LSTM, and GRU models had an accuracy of 82.54%, 82.06%, 81.1%, and 81.48%, respectively.","PeriodicalId":309427,"journal":{"name":"Acta Infologica","volume":"183 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115070232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Türkiye’de Sosyal ve Dijital Girişimcilik: Veri Kazıma Teknikleriyle Kitle Fonlaması Platformlarının İçerik Analizi
Pub Date : 2022-03-02 DOI: 10.26650/acin.997640
Murat Kılınç, C. Aydın, Çiğdem Tarhan
{"title":"Türkiye’de Sosyal ve Dijital Girişimcilik: Veri Kazıma Teknikleriyle Kitle Fonlaması Platformlarının İçerik Analizi","authors":"Murat Kılınç, C. Aydın, Çiğdem Tarhan","doi":"10.26650/acin.997640","DOIUrl":"https://doi.org/10.26650/acin.997640","url":null,"abstract":"","PeriodicalId":309427,"journal":{"name":"Acta Infologica","volume":"186 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125434560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Türk Medyasında Yaban Hayatı Kaçakçılığı
Pub Date : 2021-12-30 DOI: 10.26650/acin.978812
Kadriye Arıkan, Özgün Buyuk, Bilge Yeni, Esra Per
{"title":"Türk Medyasında Yaban Hayatı Kaçakçılığı","authors":"Kadriye Arıkan, Özgün Buyuk, Bilge Yeni, Esra Per","doi":"10.26650/acin.978812","DOIUrl":"https://doi.org/10.26650/acin.978812","url":null,"abstract":"","PeriodicalId":309427,"journal":{"name":"Acta Infologica","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131330257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Türk Tekstil İşletmelerinin Endüstri 4.0’a Adaptasyonunun İncelenmesi
Pub Date : 2021-12-30 DOI: 10.26650/acin.910774
Ahmet Özbek, A. Yildiz, M. Alan
{"title":"Türk Tekstil İşletmelerinin Endüstri 4.0’a Adaptasyonunun İncelenmesi","authors":"Ahmet Özbek, A. Yildiz, M. Alan","doi":"10.26650/acin.910774","DOIUrl":"https://doi.org/10.26650/acin.910774","url":null,"abstract":"","PeriodicalId":309427,"journal":{"name":"Acta Infologica","volume":"140 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116105215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Türkiye’deki İslami Hisse Senedi Endeksinin, Endeks Tabanlı Öznitelikler Kullanılarak Derin Öğrenme Yöntemi ile Tahmini
Pub Date : 2021-12-30 DOI: 10.26650/acin.975633
Dilşad Tülgen Çetin, Sedat Metlek
{"title":"Türkiye’deki İslami Hisse Senedi Endeksinin, Endeks Tabanlı Öznitelikler Kullanılarak Derin Öğrenme Yöntemi ile Tahmini","authors":"Dilşad Tülgen Çetin, Sedat Metlek","doi":"10.26650/acin.975633","DOIUrl":"https://doi.org/10.26650/acin.975633","url":null,"abstract":"","PeriodicalId":309427,"journal":{"name":"Acta Infologica","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132836089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Acta Infologica
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1