Pub Date : 2024-11-18Epub Date: 2024-10-29DOI: 10.1021/acs.chemrestox.4c00344
Richard B van Breemen, Bianca Flores, Israel Rubinstein, Douglas L Feinstein
Derived from the same natural anticoagulant as warfarin (dicoumarol), long-acting anticoagulant rodenticides (LAARs) or superwarfarins have much longer half-lives in human blood than warfarin (weeks instead of hours) and are more potent inhibitors of the same enzyme, vitamin K epoxide reductase component 1. While used effectively worldwide as rodenticides, LAARs can elicit severe, protracted, life-threatening coagulopathy in humans at blood concentrations >10 ng/mL leading to numerous accidental and intentional poisonings annually. To facilitate timely identification and quantitative analysis of LAARs in patients presenting unexplained severe, protracted, life-threatening coagulopathy, several analytical methods have been developed, all of which are based on electrospray liquid chromatography-mass spectrometry (LC-MS). In this perspective, we evaluated and compared these LC-MS methods in terms of validation, simultaneous detection of multiple LAARs, measurement of individual stereoisomers, and clinical applications.
{"title":"Deploying Validated Mass Spectrometry for Frontline Detection and Treatment of Human Poisoning by Long-Acting Anticoagulant Rodenticides.","authors":"Richard B van Breemen, Bianca Flores, Israel Rubinstein, Douglas L Feinstein","doi":"10.1021/acs.chemrestox.4c00344","DOIUrl":"10.1021/acs.chemrestox.4c00344","url":null,"abstract":"<p><p>Derived from the same natural anticoagulant as warfarin (dicoumarol), long-acting anticoagulant rodenticides (LAARs) or superwarfarins have much longer half-lives in human blood than warfarin (weeks instead of hours) and are more potent inhibitors of the same enzyme, vitamin K epoxide reductase component 1. While used effectively worldwide as rodenticides, LAARs can elicit severe, protracted, life-threatening coagulopathy in humans at blood concentrations >10 ng/mL leading to numerous accidental and intentional poisonings annually. To facilitate timely identification and quantitative analysis of LAARs in patients presenting unexplained severe, protracted, life-threatening coagulopathy, several analytical methods have been developed, all of which are based on electrospray liquid chromatography-mass spectrometry (LC-MS). In this perspective, we evaluated and compared these LC-MS methods in terms of validation, simultaneous detection of multiple LAARs, measurement of individual stereoisomers, and clinical applications.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":"1769-1775"},"PeriodicalIF":4.3,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-18Epub Date: 2024-11-01DOI: 10.1021/acs.chemrestox.4c00316
John R Cashman
Hepatic flavin-containing monooxygenase 3 (FMO3) is arguably the most important FMO in humans from the standpoint of drug metabolism. Recently, adult hepatic FMO3 has been linked to several conditions including cardiometabolic diseases, aging, obesity, and atherosclerosis in small animals. Despite the importance of FMO3 in drug and chemical metabolism, relative to cytochrome P-450 (CYP), fewer studies have been published describing drug and chemical metabolism. This may be due to the properties of human hepatic FMO3. For example, FMO3 is thermally labile, and often methods reported in the study of human hepatic FMO3 are not optimal. Herein, I describe some practical aspects for studying human hepatic FMO3 and other FMOs.
{"title":"Practical Aspects of Flavin-Containing Monooxygenase-Mediated Metabolism.","authors":"John R Cashman","doi":"10.1021/acs.chemrestox.4c00316","DOIUrl":"10.1021/acs.chemrestox.4c00316","url":null,"abstract":"<p><p>Hepatic flavin-containing monooxygenase 3 (FMO3) is arguably the most important FMO in humans from the standpoint of drug metabolism. Recently, adult hepatic FMO3 has been linked to several conditions including cardiometabolic diseases, aging, obesity, and atherosclerosis in small animals. Despite the importance of FMO3 in drug and chemical metabolism, relative to cytochrome P-450 (CYP), fewer studies have been published describing drug and chemical metabolism. This may be due to the properties of human hepatic FMO3. For example, FMO3 is thermally labile, and often methods reported in the study of human hepatic FMO3 are not optimal. Herein, I describe some practical aspects for studying human hepatic FMO3 and other FMOs.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":"1776-1793"},"PeriodicalIF":3.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
During widespread applications of metal-organic frameworks (MOFs), the environmental hazards and risks of MOFs have aroused great concerns. In this study, we aimed to reveal the importance of the environmental stability of MOFs on their toxicity. Two Zn-MOFs, namely, ZIF-8 with high aqueous stability and Zn-BDC with low aqueous stability, were compared directly in the toxicological evaluations of a nitrogen-fixing bacterium Azotobacter vinelandii. Zn-BDC showed strong cytotoxicity at 100 mg/L and higher, inducing growth inhibition, cell apoptosis, structural changes, oxidative damage, and, consequently, loss of nitrogen fixation ability. In contrast, ZIF-8 was nearly nontoxic to A. vinelandii. The transcriptome analysis showed that Zn-BDC directly disturbed the ribosome pathway and lowered the expression level of nitrogen-fixing nif cluster genes. On the other hand, ZIF-8 stress could regulate the flagellar assembly, siderophore group nonribosomal peptide biosynthesis, bacterial chemotaxis, and amino sugar and nucleotide sugar metabolism pathways to promote the cell growth of A. vinelandii. Beyond that, the toxicity of Zn-MOFs to A. vinelandii was associated with the release of Zn2+, but Zn-MOFs were less toxic than the mixtures of their starting materials. Overall, our results suggested that the environmental stability of Zn-MOFs determined their environmental toxicity through different molecular pathways. Designing stable MOFs is preferred due to environment-friendly considerations.
{"title":"Environmental Stability Determines the Cytotoxicity of Metal-Organic Frameworks to a Nitrogen-Fixing Bacterium <i>Azotobacter vinelandii</i>.","authors":"Ziqi Tang, Chengzhuang Liang, Qinmei Zhong, Jinwei Yang, Yusen Ma, Yue Yuan, Yiming Zeng, Xian Wu, Sheng-Tao Yang","doi":"10.1021/acs.chemrestox.4c00385","DOIUrl":"10.1021/acs.chemrestox.4c00385","url":null,"abstract":"<p><p>During widespread applications of metal-organic frameworks (MOFs), the environmental hazards and risks of MOFs have aroused great concerns. In this study, we aimed to reveal the importance of the environmental stability of MOFs on their toxicity. Two Zn-MOFs, namely, ZIF-8 with high aqueous stability and Zn-BDC with low aqueous stability, were compared directly in the toxicological evaluations of a nitrogen-fixing bacterium <i>Azotobacter vinelandii</i>. Zn-BDC showed strong cytotoxicity at 100 mg/L and higher, inducing growth inhibition, cell apoptosis, structural changes, oxidative damage, and, consequently, loss of nitrogen fixation ability. In contrast, ZIF-8 was nearly nontoxic to <i>A. vinelandii</i>. The transcriptome analysis showed that Zn-BDC directly disturbed the ribosome pathway and lowered the expression level of nitrogen-fixing <i>nif</i> cluster genes. On the other hand, ZIF-8 stress could regulate the flagellar assembly, siderophore group nonribosomal peptide biosynthesis, bacterial chemotaxis, and amino sugar and nucleotide sugar metabolism pathways to promote the cell growth of <i>A. vinelandii</i>. Beyond that, the toxicity of Zn-MOFs to <i>A. vinelandii</i> was associated with the release of Zn<sup>2+</sup>, but Zn-MOFs were less toxic than the mixtures of their starting materials. Overall, our results suggested that the environmental stability of Zn-MOFs determined their environmental toxicity through different molecular pathways. Designing stable MOFs is preferred due to environment-friendly considerations.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cytochrome P450 2D6 (CYP2D6) exhibits rich genetic polymorphism, and functional changes caused by variations are the key reasons for differences in substrate drug systemic exposure. Discovering novel variants and defining their enzymatic kinetic characteristics can contribute to the personalized application of drugs. In this study, a data chain of variant-function-structure was established through population-based sequencing, baculovirus insect cell expression, in vitro enzymatic incubation, and ultrahigh performance liquid chromatography tandem mass spectrometry. Results revealed nine novel missense mutations in the exonic regions. After the corresponding microsomes were obtained, the kinetics of the variants were investigated using dextromethorphan as a probe substrate. It was found that the activities of CYP2D6.2, 10, 17, 35, 65, R28G, T76M, and E215K were significantly reduced, while D301V almost led to loss of enzyme function. Additionally, the relative clearance rate of R25Q was significantly increased. From the molecular structure perspective, the mutation sites are distributed outside the dextromethorphan binding pocket, suggesting that they primarily influence CYP2D6 activity via allosteric modulation. These research findings provide fundamental data for the precise application of CYP2D6 substrate drugs.
{"title":"Discovery and Enzyme Kinetic Characterization of Novel CYP2D6 Variants.","authors":"Yun-Shan Zhong, Qi-Hui Kong, Jing Wang, Feng Ye, Xin-Yue Li, Li-Qun Zhang, Da-Peng Dai, Guo-Xin Hu, Jian-Ping Cai, Jian-Chang Qian, Fu-Sui Ji","doi":"10.1021/acs.chemrestox.4c00298","DOIUrl":"10.1021/acs.chemrestox.4c00298","url":null,"abstract":"<p><p>Cytochrome P450 2D6 (CYP2D6) exhibits rich genetic polymorphism, and functional changes caused by variations are the key reasons for differences in substrate drug systemic exposure. Discovering novel variants and defining their enzymatic kinetic characteristics can contribute to the personalized application of drugs. In this study, a data chain of variant-function-structure was established through population-based sequencing, baculovirus insect cell expression, <i>in vitro</i> enzymatic incubation, and ultrahigh performance liquid chromatography tandem mass spectrometry. Results revealed nine novel missense mutations in the exonic regions. After the corresponding microsomes were obtained, the kinetics of the variants were investigated using dextromethorphan as a probe substrate. It was found that the activities of CYP2D6.2, 10, 17, 35, 65, R28G, T76M, and E215K were significantly reduced, while D301V almost led to loss of enzyme function. Additionally, the relative clearance rate of R25Q was significantly increased. From the molecular structure perspective, the mutation sites are distributed outside the dextromethorphan binding pocket, suggesting that they primarily influence CYP2D6 activity via allosteric modulation. These research findings provide fundamental data for the precise application of CYP2D6 substrate drugs.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":"1903-1910"},"PeriodicalIF":4.3,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-18Epub Date: 2024-11-08DOI: 10.1021/acs.chemrestox.4c00169
Fabrice Camilleri, Joanna M Wenda, Claire Pecoraro-Mercier, Jean-Paul Comet, David Rouquié
Early derisking decisions in the development of new chemical compounds enable the identification of novel chemical candidates with improved safety profiles. In vivo studies are traditionally conducted in the early assessment of acute oral toxicity of crop protection products to avoid compounds, which are considered "very acutely toxic", with an in vivo lethal dose of 50% (LD50) ≤ 60 mg/kg body weight. Those studies are lengthy and costly and raise ethical concerns, catalyzing the use of nonanimal alternatives. The objective of our analysis was to assess the predictive efficacy of read-across approaches for acute oral toxicity in rats, comparing the use of chemical structure information, in vitro biological data derived from the Cell Painting profiling assay on U2OS cells, or the combination of both. Our findings indicate that the classification of compounds as very acute oral toxic (LD50 ≤ 60 mg/kg) or not is possible using a read-across approach, with chemical structure information, morphological profiles, or a combination of both. When classifying compounds structurally similar to those in the training set, the chemical structure was more predictive (balanced accuracy of 0.82). Conversely, when the compounds to be classified were structurally different from those in the training set, the morphological profiles were more predictive (balanced accuracy of 0.72). Combining the two models allowed for the classification of compounds structurally similar to those in the training set to slightly improve the predictions (balanced accuracy of 0.85).
{"title":"Cell Painting and Chemical Structure Read-Across Can Complement Each Other for Rat Acute Oral Toxicity Prediction in Chemical Early Derisking.","authors":"Fabrice Camilleri, Joanna M Wenda, Claire Pecoraro-Mercier, Jean-Paul Comet, David Rouquié","doi":"10.1021/acs.chemrestox.4c00169","DOIUrl":"10.1021/acs.chemrestox.4c00169","url":null,"abstract":"<p><p>Early derisking decisions in the development of new chemical compounds enable the identification of novel chemical candidates with improved safety profiles. In vivo studies are traditionally conducted in the early assessment of acute oral toxicity of crop protection products to avoid compounds, which are considered \"very acutely toxic\", with an in vivo lethal dose of 50% (LD50) ≤ 60 mg/kg body weight. Those studies are lengthy and costly and raise ethical concerns, catalyzing the use of nonanimal alternatives. The objective of our analysis was to assess the predictive efficacy of read-across approaches for acute oral toxicity in rats, comparing the use of chemical structure information, in vitro biological data derived from the Cell Painting profiling assay on U2OS cells, or the combination of both. Our findings indicate that the classification of compounds as very acute oral toxic (LD50 ≤ 60 mg/kg) or not is possible using a read-across approach, with chemical structure information, morphological profiles, or a combination of both. When classifying compounds structurally similar to those in the training set, the chemical structure was more predictive (balanced accuracy of 0.82). Conversely, when the compounds to be classified were structurally different from those in the training set, the morphological profiles were more predictive (balanced accuracy of 0.72). Combining the two models allowed for the classification of compounds structurally similar to those in the training set to slightly improve the predictions (balanced accuracy of 0.85).</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":"1851-1866"},"PeriodicalIF":4.3,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-15DOI: 10.1021/acs.chemrestox.4c00398
Yulia B Monakhova, Klaudia Adels, Bernd W K Diehl
To circumvent regulatory frameworks, many producers start to substitute plant-derived nicotine (tobacco-derived nicotine, TDN) by synthetic nicotine (tobacco-free nicotine, TFN) in e-cigarette products. Due to the higher costs of enantiomeric synthesis and purification of TFN, there is a need to develop an analytical method that clearly distinguishes between the two sources. To trace nicotine's origin, its enantiomeric purity can be postulated by 1H NMR spectroscopy using (R)-(-)-1,1'-binaphthyl-2,2'-diyl hydrogen phosphate (BNPPA) as a chiral complexing agent. Low-field (LF) NMR conditions were optimized for this purpose even using a small amount of e-liquid sample (limit of quantification 8 mg/mL nicotine). All investigated products were found to contain one isomer (most likely (S)-(-)-nicotine). A direct 13C NMR method at natural abundance has been validated to differentiate (S)-TDN and (S)-TFN in e-cigarettes produced using nicotine of different origin. The method is based on calculation of the relative 13C content of 10 C-positions of the nicotine molecule with intraday and interday precisions below <0.2%. The method was applied to 12 commercial e-cigarette products labeled as containing TDN and TFN. Principal component analysis (PCA) was applied to the relative peak areas to visualize the difference between studied products. The LF 1H NMR method is a good alternative to expensive high-field NMR to differentiate between a racemate mixture and single optical isomers, whereas only high-precision 13C NMR can be used to distinguish (S)-TDN and (S)-TFN in e-cigarettes after appropriate sample extraction.
{"title":"Plant-Derived and Synthetic Nicotine in E-Cigarettes: Is Differentiation with NMR Spectroscopy Possible?","authors":"Yulia B Monakhova, Klaudia Adels, Bernd W K Diehl","doi":"10.1021/acs.chemrestox.4c00398","DOIUrl":"https://doi.org/10.1021/acs.chemrestox.4c00398","url":null,"abstract":"<p><p>To circumvent regulatory frameworks, many producers start to substitute plant-derived nicotine (tobacco-derived nicotine, TDN) by synthetic nicotine (tobacco-free nicotine, TFN) in e-cigarette products. Due to the higher costs of enantiomeric synthesis and purification of TFN, there is a need to develop an analytical method that clearly distinguishes between the two sources. To trace nicotine's origin, its enantiomeric purity can be postulated by <sup>1</sup>H NMR spectroscopy using (<i>R</i>)-(-)-1,1'-binaphthyl-2,2'-diyl hydrogen phosphate (BNPPA) as a chiral complexing agent. Low-field (LF) NMR conditions were optimized for this purpose even using a small amount of e-liquid sample (limit of quantification 8 mg/mL nicotine). All investigated products were found to contain one isomer (most likely (<i>S</i>)-(-)-nicotine). A direct <sup>13</sup>C NMR method at natural abundance has been validated to differentiate (<i>S</i>)-TDN and (<i>S</i>)-TFN in e-cigarettes produced using nicotine of different origin. The method is based on calculation of the relative <sup>13</sup>C content of 10 C-positions of the nicotine molecule with intraday and interday precisions below <0.2%. The method was applied to 12 commercial e-cigarette products labeled as containing TDN and TFN. Principal component analysis (PCA) was applied to the relative peak areas to visualize the difference between studied products. The LF <sup>1</sup>H NMR method is a good alternative to expensive high-field NMR to differentiate between a racemate mixture and single optical isomers, whereas only high-precision <sup>13</sup>C NMR can be used to distinguish (<i>S</i>)-TDN and (<i>S</i>)-TFN in e-cigarettes after appropriate sample extraction.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142638018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Donepezil (DNP) is a selective cholinesterase inhibitor widely used for the therapy of Alzheimer's disease. Instances of liver injury correlated with DNP treatment have been reported, yet the underlying hepatotoxic mechanism remains to be elucidated. This study aimed to explore the contribution of metabolic activation to the hepatotoxicity of DNP. The structure of 6-O-desmethyl DNP (M1), the oxidative metabolite of DNP, was characterized by chemical synthesis, LC-MS/MS, and nuclear magnetic resonance. A reactive quinone methide resulting from the metabolism of DNP was captured by glutathione (GSH) fortified in liver microsomal incubations after exposure to DNP, and the resulting GSH conjugate (M2) was detected in the bile of rats receiving DNP. Recombinant human P450 enzyme incubation studies demonstrated that CYP3A4 was the principal enzyme responsible for the production of M1 and M2. The generation of M2 declined in rat primary hepatocytes pretreated with ketoconazole, an inhibitor of CYP3A4, which also decreased the vulnerability of rat primary hepatocytes to DNP-caused cytotoxicity. These findings suggest that the quinone methide metabolite may contribute to the cytotoxicity and hepatotoxicity caused by the DNP.
{"title":"Metabolic Activation and Cytotoxicity of Donepezil Induced by CYP3A4.","authors":"Jiannan Zheng, Guode Zhao, Zixia Hu, Chenyang Jia, Weiwei Li, Ying Peng, Jiang Zheng","doi":"10.1021/acs.chemrestox.4c00357","DOIUrl":"https://doi.org/10.1021/acs.chemrestox.4c00357","url":null,"abstract":"<p><p>Donepezil (DNP) is a selective cholinesterase inhibitor widely used for the therapy of Alzheimer's disease. Instances of liver injury correlated with DNP treatment have been reported, yet the underlying hepatotoxic mechanism remains to be elucidated. This study aimed to explore the contribution of metabolic activation to the hepatotoxicity of DNP. The structure of 6-<i>O</i>-desmethyl DNP (M1), the oxidative metabolite of DNP, was characterized by chemical synthesis, LC-MS/MS, and nuclear magnetic resonance. A reactive quinone methide resulting from the metabolism of DNP was captured by glutathione (GSH) fortified in liver microsomal incubations after exposure to DNP, and the resulting GSH conjugate (M2) was detected in the bile of rats receiving DNP. Recombinant human P450 enzyme incubation studies demonstrated that CYP3A4 was the principal enzyme responsible for the production of M1 and M2. The generation of M2 declined in rat primary hepatocytes pretreated with ketoconazole, an inhibitor of CYP3A4, which also decreased the vulnerability of rat primary hepatocytes to DNP-caused cytotoxicity. These findings suggest that the quinone methide metabolite may contribute to the cytotoxicity and hepatotoxicity caused by the DNP.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142638017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-14DOI: 10.1021/acs.chemrestox.4c00289
Jakub Kostal, Joshua Vaughan, Kamila Blum, Adelina Voutchkova-Kostal
Asthma is of concern in occupational toxicology with significant public-health and economic costs. In the absence of benchmark in vivo and in vitro tests, the use of mechanistically sound in silico models is critical to inform hazard and to protect workers from exposure to potentially harmful substances. We recently reported on the computer-aided discovery and REdesign (CADRE) model for respiratory sensitization, which relies on a tiered structure of expert rules, molecular simulations, quantum-mechanics calculations and advanced statistics to accurately identify respiratory sensitizers from first principles. Here, we present an update to this model based on two years of testing in the pharmaceutical space, where we captured the heterogeneity of the underlying experimental evidence in two predictive tiers, thus allowing the practitioner to select an outcome based on their expert assessment of the data reliability and relevance. This user-based tuning of predictive models is critical for end points that lack consensus on what constitutes satisfactory evidence to support a decision in the handling of chemicals for occupational safety.
{"title":"Capturing Differential Quality of Experimental Evidence in a Predictive Quantum-Mechanical Model for Respiratory Sensitization.","authors":"Jakub Kostal, Joshua Vaughan, Kamila Blum, Adelina Voutchkova-Kostal","doi":"10.1021/acs.chemrestox.4c00289","DOIUrl":"https://doi.org/10.1021/acs.chemrestox.4c00289","url":null,"abstract":"<p><p>Asthma is of concern in occupational toxicology with significant public-health and economic costs. In the absence of benchmark in vivo and in vitro tests, the use of mechanistically sound in silico models is critical to inform hazard and to protect workers from exposure to potentially harmful substances. We recently reported on the computer-aided discovery and REdesign (CADRE) model for respiratory sensitization, which relies on a tiered structure of expert rules, molecular simulations, quantum-mechanics calculations and advanced statistics to accurately identify respiratory sensitizers from first principles. Here, we present an update to this model based on two years of testing in the pharmaceutical space, where we captured the heterogeneity of the underlying experimental evidence in two predictive tiers, thus allowing the practitioner to select an outcome based on their expert assessment of the data reliability and relevance. This user-based tuning of predictive models is critical for end points that lack consensus on what constitutes satisfactory evidence to support a decision in the handling of chemicals for occupational safety.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-13DOI: 10.1021/acs.chemrestox.4c00186
Zhongyu Mou, Patra Volarath, Rebecca Racz, Kevin P Cross, Mounika Girireddy, Suman Chakravarti, Lidiya Stavitskaya
Drug-induced cardiotoxicity represents one of the most common causes of attrition of drug candidates in preclinical and clinical development. For this reason, the evaluation of cardiac toxicity is essential during drug development and regulatory review. In the present study, drug-induced postmarket adverse event combinations from the FDA Adverse Event Reporting System were extracted for 2002 drugs using 243 cardiac toxicity-related preferred terms (PTs). These PTs were combined into 12 groups based on their clinical relevance to serve as training sets. The optimal classification scheme was determined using a combination of data sources that included drug labeling information, published literature, clinical study data, and postmarket surveillance data. Two commercial QSAR platforms were used to construct 12 models, including general cardiac toxicity, cardiac ischemia, heart failure, cardiac valve disease, myocardial disease, pericardial disease, structural heart disease, cardiac arrhythmia, Torsades de Pointes, long QT syndrome, atrial fibrillation and ventricular arrhythmia, and cardiac arrest. The cross-validated performance for the new models reached a sensitivity of up to 80% and negative predictivity of up to 80%. These new models covering a wide range of cardiac endpoints will provide fast, reliable, and comprehensive predictions of potential cardiotoxic compounds in drug discovery and regulatory safety assessment.
药物引起的心脏毒性是候选药物在临床前和临床开发过程中最常见的损耗原因之一。因此,在药物开发和监管审查过程中,对心脏毒性的评估至关重要。本研究使用 243 个与心脏毒性相关的首选术语(PTs),从 FDA 不良事件报告系统中提取了 2002 种药物的上市后不良事件组合。根据这些术语的临床相关性将其分为 12 组,作为训练集。最佳分类方案是综合使用各种数据源确定的,这些数据源包括药物标签信息、公开发表的文献、临床研究数据和上市后监测数据。使用两个商业 QSAR 平台构建了 12 个模型,包括一般心脏毒性、心脏缺血、心力衰竭、心脏瓣膜疾病、心肌疾病、心包疾病、结构性心脏病、心律失常、Torsades de Pointes、长 QT 综合征、心房颤动和室性心律失常以及心脏骤停。经交叉验证,新模型的灵敏度高达 80%,负预测率高达 80%。这些涵盖广泛心脏终点的新模型将为药物发现和监管安全评估提供快速、可靠和全面的潜在心脏毒性化合物预测。
{"title":"Quantitative Structure-Activity Relationship Models to Predict Cardiac Adverse Effects.","authors":"Zhongyu Mou, Patra Volarath, Rebecca Racz, Kevin P Cross, Mounika Girireddy, Suman Chakravarti, Lidiya Stavitskaya","doi":"10.1021/acs.chemrestox.4c00186","DOIUrl":"https://doi.org/10.1021/acs.chemrestox.4c00186","url":null,"abstract":"<p><p>Drug-induced cardiotoxicity represents one of the most common causes of attrition of drug candidates in preclinical and clinical development. For this reason, the evaluation of cardiac toxicity is essential during drug development and regulatory review. In the present study, drug-induced postmarket adverse event combinations from the FDA Adverse Event Reporting System were extracted for 2002 drugs using 243 cardiac toxicity-related preferred terms (PTs). These PTs were combined into 12 groups based on their clinical relevance to serve as training sets. The optimal classification scheme was determined using a combination of data sources that included drug labeling information, published literature, clinical study data, and postmarket surveillance data. Two commercial QSAR platforms were used to construct 12 models, including general cardiac toxicity, cardiac ischemia, heart failure, cardiac valve disease, myocardial disease, pericardial disease, structural heart disease, cardiac arrhythmia, Torsades de Pointes, long QT syndrome, atrial fibrillation and ventricular arrhythmia, and cardiac arrest. The cross-validated performance for the new models reached a sensitivity of up to 80% and negative predictivity of up to 80%. These new models covering a wide range of cardiac endpoints will provide fast, reliable, and comprehensive predictions of potential cardiotoxic compounds in drug discovery and regulatory safety assessment.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-13DOI: 10.1021/acs.chemrestox.4c00326
Nicholas E Robertson, Jack Connolly, Nikolay Shevchenko, Mark Mascal, Kent E Pinkerton, Sascha C T Nicklisch, Tran B Nguyen
Vaping cannabinoids in electronic (e)-cigarette devices is rapidly increasing in popularity, particularly among adolescents, although the chemistry affecting the composition of the vape aerosol is not well understood. This work investigates the formation of aerosol mass, bioactive hydroxyquinones, and harmful or potentially harmful carbonyls from the e-cigarette vaping of natural and synthetic cannabinoids e-liquids in propylene glycol and vegetable glycerin (PG/VG) solvent at a 50 mg/mL concentration in a commercial fourth-generation vaping device. The following cannabinoids were studied: cannabidiol (CBD), 8,9-dihydrocannabidiol (H2CBD), 1,2,8,9-tetrahydrocannabidiol (H4CBD), cannabigerol (CBG), and cannabidiolic acid (CBDA). Quantification of analytes was performed using liquid chromatography coupled to accurate mass spectrometry. The addition of cannabinoids significantly increased aerosol and carbonyl formation compared with the PG/VG solvent alone. All cannabinoids in the study formed hydroxyquinones during vaping (up to ∼1% mass conversion) except for CBDA, which primarily decarboxylated to CBD. Hydroxyquinone formation increased and carbonyl formation decreased, with a decreasing number of double bonds among CBD and its synthetic analogues (H2CBD and H4CBD). During the vaping process, ∼3-6% of the cannabinoid mass can be observed as carbonyls under the study conditions. Oxidation of the terpene moiety on the cannabinoids is proposed as a major contributor to carbonyl formation. CBD produced significantly higher concentrations of formaldehyde, acetaldehyde, acrolein, diacetyl, and methylglyoxal compared with the other cannabinoid samples. CBG produced significantly higher levels of acetone, methacrolein, and methylglyoxal. Conversion of CBD to tetrahydrocannabinol (THC) was not observed under the study conditions. The chemical mechanism basis for these observations is discussed. Compared with other modalities of use for CBD and other cannabinoids, vaping has the potential to adversely impact human health by producing harmful products during the heated aerosolization process.
{"title":"Chemical Composition of Aerosols from the E-Cigarette Vaping of Natural and Synthetic Cannabinoids.","authors":"Nicholas E Robertson, Jack Connolly, Nikolay Shevchenko, Mark Mascal, Kent E Pinkerton, Sascha C T Nicklisch, Tran B Nguyen","doi":"10.1021/acs.chemrestox.4c00326","DOIUrl":"https://doi.org/10.1021/acs.chemrestox.4c00326","url":null,"abstract":"<p><p>Vaping cannabinoids in electronic (e)-cigarette devices is rapidly increasing in popularity, particularly among adolescents, although the chemistry affecting the composition of the vape aerosol is not well understood. This work investigates the formation of aerosol mass, bioactive hydroxyquinones, and harmful or potentially harmful carbonyls from the e-cigarette vaping of natural and synthetic cannabinoids e-liquids in propylene glycol and vegetable glycerin (PG/VG) solvent at a 50 mg/mL concentration in a commercial fourth-generation vaping device. The following cannabinoids were studied: cannabidiol (CBD), 8,9-dihydrocannabidiol (H2CBD), 1,2,8,9-tetrahydrocannabidiol (H4CBD), cannabigerol (CBG), and cannabidiolic acid (CBDA). Quantification of analytes was performed using liquid chromatography coupled to accurate mass spectrometry. The addition of cannabinoids significantly increased aerosol and carbonyl formation compared with the PG/VG solvent alone. All cannabinoids in the study formed hydroxyquinones during vaping (up to ∼1% mass conversion) except for CBDA, which primarily decarboxylated to CBD. Hydroxyquinone formation increased and carbonyl formation decreased, with a decreasing number of double bonds among CBD and its synthetic analogues (H2CBD and H4CBD). During the vaping process, ∼3-6% of the cannabinoid mass can be observed as carbonyls under the study conditions. Oxidation of the terpene moiety on the cannabinoids is proposed as a major contributor to carbonyl formation. CBD produced significantly higher concentrations of formaldehyde, acetaldehyde, acrolein, diacetyl, and methylglyoxal compared with the other cannabinoid samples. CBG produced significantly higher levels of acetone, methacrolein, and methylglyoxal. Conversion of CBD to tetrahydrocannabinol (THC) was not observed under the study conditions. The chemical mechanism basis for these observations is discussed. Compared with other modalities of use for CBD and other cannabinoids, vaping has the potential to adversely impact human health by producing harmful products during the heated aerosolization process.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}