Pub Date : 2015-02-04DOI: 10.1093/acprof:oso/9780199596492.003.0015
A. Lever
Recent developments in neuroscience create new opportunities for understanding the human brain. The power to do good, however, is also the power to harm, so scientific advances inevitably foster as many dystopian fears as utopian hopes. For instance, neuroscience lends itself to the fear that people will be forced to reveal thoughts and feelings which they would not have chosen to reveal, and of which they may be unaware. It also lends itself to the worry that people will be encouraged to submit to medication or surgery which, even if otherwise beneficial, alters their brain in ways that undermine their identity and agency. As Kenneth Foster notes, neural implants can have surprising and unintended adverse effects, even when they help to mitigate the loss of bodily control associated with Parkinson’s disease, or help to provide hearing for children who would otherwise be profoundly deaf. While the risk of adverse outcomes are scarcely specific to neuroscience, he thinks that ‘These issues are perhaps more acute’ with the latter than with other medical interventions, ‘because they are intimately and fundamentally related to a person’s communication with the outside world’.Neuroscience, like genomic science, then, is likely to create new ways of harming people. Many of these will involve violations of privacy. However, these are unlikely fundamentally to challenge the reasons to value privacy, or our ability to protect it in the foreseeable future. Rather, I would suggest, the major threat to privacy comes from the difficulty of determining its nature and value and when, if ever, efforts to protect it are justified. So I will start by examining some threats to privacy, and their implications for neuroscience, before turning to philosophical problems in understanding the nature and value of privacy, and the practical consequences of those philosophical difficulties.
{"title":"Neuroscience V. Privacy? A Democratic Perspective","authors":"A. Lever","doi":"10.1093/acprof:oso/9780199596492.003.0015","DOIUrl":"https://doi.org/10.1093/acprof:oso/9780199596492.003.0015","url":null,"abstract":"Recent developments in neuroscience create new opportunities for understanding the human brain. The power to do good, however, is also the power to harm, so scientific advances inevitably foster as many dystopian fears as utopian hopes. For instance, neuroscience lends itself to the fear that people will be forced to reveal thoughts and feelings which they would not have chosen to reveal, and of which they may be unaware. It also lends itself to the worry that people will be encouraged to submit to medication or surgery which, even if otherwise beneficial, alters their brain in ways that undermine their identity and agency. As Kenneth Foster notes, neural implants can have surprising and unintended adverse effects, even when they help to mitigate the loss of bodily control associated with Parkinson’s disease, or help to provide hearing for children who would otherwise be profoundly deaf. While the risk of adverse outcomes are scarcely specific to neuroscience, he thinks that ‘These issues are perhaps more acute’ with the latter than with other medical interventions, ‘because they are intimately and fundamentally related to a person’s communication with the outside world’.Neuroscience, like genomic science, then, is likely to create new ways of harming people. Many of these will involve violations of privacy. However, these are unlikely fundamentally to challenge the reasons to value privacy, or our ability to protect it in the foreseeable future. Rather, I would suggest, the major threat to privacy comes from the difficulty of determining its nature and value and when, if ever, efforts to protect it are justified. So I will start by examining some threats to privacy, and their implications for neuroscience, before turning to philosophical problems in understanding the nature and value of privacy, and the practical consequences of those philosophical difficulties.","PeriodicalId":314850,"journal":{"name":"Biology & Cognitive Science eJournal","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126135945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-12-20DOI: 10.4236/JBBS.2014.412054
A. D. da Rocha, E. Massad, F. Rocha, M. Burattini
Brazil has introduced a referendum regarding the prohibition of firearm commerce and propaganda arguments have invoked socially and personally driven issues in the promotion of voting in favor of and against firearm control, respectively. Here, we used different techniques to study the brain activity associated with a voter’s perception of the truthfulness of these arguments and their influence on voting decisions. Low-resolution tomography was used to identify the possible different sets of neurons activated in the analysis of the different types of propaganda. Linear correlation was used to calculate the amount information H(ei) provided to different electrodes about how these sets of neurons enroll themselves to carry out this cognitive analysis. The results clearly showed that vote decision was not influenced by arguments that were introduced by propaganda, which was typically driven by specific social or self-interest motives. However, different neural circuits were identified in the analysis of each type of propaganda argument, independently of the declared vote (for or against the control) intention.
{"title":"Brain and Law: An EEG Study of How We Decide or Not to Implement a Law","authors":"A. D. da Rocha, E. Massad, F. Rocha, M. Burattini","doi":"10.4236/JBBS.2014.412054","DOIUrl":"https://doi.org/10.4236/JBBS.2014.412054","url":null,"abstract":"Brazil has introduced a referendum regarding the prohibition of firearm commerce and propaganda arguments have invoked socially and personally driven issues in the promotion of voting in favor of and against firearm control, respectively. Here, we used different techniques to study the brain activity associated with a voter’s perception of the truthfulness of these arguments and their influence on voting decisions. Low-resolution tomography was used to identify the possible different sets of neurons activated in the analysis of the different types of propaganda. Linear correlation was used to calculate the amount information H(ei) provided to different electrodes about how these sets of neurons enroll themselves to carry out this cognitive analysis. The results clearly showed that vote decision was not influenced by arguments that were introduced by propaganda, which was typically driven by specific social or self-interest motives. However, different neural circuits were identified in the analysis of each type of propaganda argument, independently of the declared vote (for or against the control) intention.","PeriodicalId":314850,"journal":{"name":"Biology & Cognitive Science eJournal","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123174572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}