首页 > 最新文献

Chemical Research in Toxicology最新文献

英文 中文
Analytical Methodologies to Detect N-Nitrosamine Impurities in Active Pharmaceutical Ingredients, Drug Products and Other Matrices 检测活性药物成分、药物产品和其他基质中 N-亚硝胺杂质的分析方法
IF 3.7 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-08-19 DOI: 10.1021/acs.chemrestox.4c0023410.1021/acs.chemrestox.4c00234
Krishna Moorthy Manchuri*, Mahammad Ali Shaik, Venkata Subba Reddy Gopireddy, Naziya Sultana and Sreenivasarao Gogineni, 

Since 2018, N-nitrosamine impurities have become a widespread concern in the global regulatory landscape of pharmaceutical products. This concern arises due to their potential for contamination, toxicity, carcinogenicity, and mutagenicity and their presence in many active pharmaceutical ingredients, drug products, and other matrices. N-Nitrosamine impurities in humans can lead to severe chemical toxicity effects. These include carcinogenic effects, metabolic disruptions, reproductive harm, liver diseases, obesity, DNA damage, cell death, chromosomal alterations, birth defects, and pregnancy loss. They are particularly known to cause cancer (tumors) in various organs and tissues such as the liver, lungs, nasal cavity, esophagus, pancreas, stomach, urinary bladder, colon, kidneys, and central nervous system. Additionally, N-nitrosamine impurities may contribute to the development of Alzheimer’s and Parkinson’s diseases and type-2 diabetes. Therefore, it is very important to control or avoid them by enhancing effective analytical methodologies using cutting-edge analytical techniques such as LC-MS, GC-MS, CE-MS, SFC, etc. Moreover, these analytical methods need to be sensitive and selective with suitable precision and accuracy, so that the actual amounts of N-nitrosamine impurities can be detected and quantified appropriately in drugs. Regulatory agencies such as the US FDA, EMA, ICH, WHO, etc. need to focus more on the hazards of N-nitrosamine impurities by providing guidance and regular updates to drug manufacturers and applicants. Similarly, drug manufacturers should be more vigilant to avoid nitrosating agents and secondary amines during the manufacturing processes. Numerous review articles have been published recently by various researchers, focusing on N-nitrosamine impurities found in previously notified products, including sartans, metformin, and ranitidine. These impurities have also been detected in a wide range of other products. Consequently, this review aims to concentrate on products recently reported to contain N-nitrosamine impurities. These products include rifampicin, champix, famotidine, nizatidine, atorvastatin, bumetanide, itraconazole, diovan, enalapril, propranolol, lisinopril, duloxetine, rivaroxaban, pioglitazones, glifizones, cilostazol, and sunitinib.

自 2018 年以来,N-亚硝胺杂质已成为全球药品监管领域广泛关注的问题。产生这种担忧的原因在于其潜在的污染性、毒性、致癌性和致突变性,以及在许多活性药物成分、药物产品和其他基质中的存在。人体中的 N-亚硝胺杂质可导致严重的化学毒性效应。这些影响包括致癌作用、新陈代谢紊乱、生殖危害、肝脏疾病、肥胖、DNA 损伤、细胞死亡、染色体改变、先天缺陷和妊娠失败。它们尤其会导致肝脏、肺、鼻腔、食道、胰腺、胃、膀胱、结肠、肾脏和中枢神经系统等器官和组织发生癌症(肿瘤)。此外,N-亚硝胺杂质还可能导致阿尔茨海默氏症、帕金森氏症和 2 型糖尿病。因此,利用 LC-MS、GC-MS、CE-MS、SFC 等前沿分析技术,加强有效的分析方法来控制或避免这些杂质是非常重要的。此外,这些分析方法还需要具有灵敏度和选择性,以及适当的精度和准确度,这样才能适当地检测和量化药物中 N-亚硝胺杂质的实际含量。美国 FDA、EMA、ICH、WHO 等监管机构需要更加关注 N-亚硝胺杂质的危害,为药品生产商和申请者提供指导并定期更新。同样,药品生产商也应提高警惕,避免在生产过程中使用亚硝酸胺和仲胺。最近,许多研究人员发表了大量综述文章,重点介绍了在以前通报的产品(包括沙坦类、二甲双胍和雷尼替丁)中发现的 N-亚硝胺杂质。在许多其他产品中也发现了这些杂质。因此,本次审查旨在集中关注最近报告含有 N-亚硝胺杂质的产品。这些产品包括利福平、香必可、法莫替丁、尼扎替丁、阿托伐他汀、布美他尼、伊曲康唑、迪凡、依那普利、普萘洛尔、利辛普利、度洛西汀、利伐沙班、吡格列酮、格列酮、西洛他唑和舒尼替尼。
{"title":"Analytical Methodologies to Detect N-Nitrosamine Impurities in Active Pharmaceutical Ingredients, Drug Products and Other Matrices","authors":"Krishna Moorthy Manchuri*,&nbsp;Mahammad Ali Shaik,&nbsp;Venkata Subba Reddy Gopireddy,&nbsp;Naziya Sultana and Sreenivasarao Gogineni,&nbsp;","doi":"10.1021/acs.chemrestox.4c0023410.1021/acs.chemrestox.4c00234","DOIUrl":"https://doi.org/10.1021/acs.chemrestox.4c00234https://doi.org/10.1021/acs.chemrestox.4c00234","url":null,"abstract":"<p >Since 2018, N-nitrosamine impurities have become a widespread concern in the global regulatory landscape of pharmaceutical products. This concern arises due to their potential for contamination, toxicity, carcinogenicity, and mutagenicity and their presence in many active pharmaceutical ingredients, drug products, and other matrices. N-Nitrosamine impurities in humans can lead to severe chemical toxicity effects. These include carcinogenic effects, metabolic disruptions, reproductive harm, liver diseases, obesity, DNA damage, cell death, chromosomal alterations, birth defects, and pregnancy loss. They are particularly known to cause cancer (tumors) in various organs and tissues such as the liver, lungs, nasal cavity, esophagus, pancreas, stomach, urinary bladder, colon, kidneys, and central nervous system. Additionally, N-nitrosamine impurities may contribute to the development of Alzheimer’s and Parkinson’s diseases and type-2 diabetes. Therefore, it is very important to control or avoid them by enhancing effective analytical methodologies using cutting-edge analytical techniques such as LC-MS, GC-MS, CE-MS, SFC, etc. Moreover, these analytical methods need to be sensitive and selective with suitable precision and accuracy, so that the actual amounts of N-nitrosamine impurities can be detected and quantified appropriately in drugs. Regulatory agencies such as the US FDA, EMA, ICH, WHO, etc. need to focus more on the hazards of N-nitrosamine impurities by providing guidance and regular updates to drug manufacturers and applicants. Similarly, drug manufacturers should be more vigilant to avoid nitrosating agents and secondary amines during the manufacturing processes. Numerous review articles have been published recently by various researchers, focusing on N-nitrosamine impurities found in previously notified products, including sartans, metformin, and ranitidine. These impurities have also been detected in a wide range of other products. Consequently, this review aims to concentrate on products recently reported to contain N-nitrosamine impurities. These products include rifampicin, champix, famotidine, nizatidine, atorvastatin, bumetanide, itraconazole, diovan, enalapril, propranolol, lisinopril, duloxetine, rivaroxaban, pioglitazones, glifizones, cilostazol, and sunitinib.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":"37 9","pages":"1456–1483 1456–1483"},"PeriodicalIF":3.7,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.chemrestox.4c00234","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142234599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unraveling Interspecies Differences in the Phase I Hepatic Metabolism of Alternariol and Alternariol Monomethyl Ether: Closing Data Gaps for a Comprehensive Risk Assessment. 揭示Alternariol和Alternariol单甲醚肝脏I期代谢的种间差异:缩小数据差距,进行全面风险评估。
IF 3.7 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-08-19 Epub Date: 2024-07-19 DOI: 10.1021/acs.chemrestox.4c00095
Eszter Borsos, Elisabeth Varga, Georg Aichinger, Doris Marko

The Alternaria mycotoxins alternariol (AOH) and alternariol 9-O-monomethyl ether (AME) are pervasive food contaminants known to exert adverse effects in vitro, yet their toxicokinetics remain inadequately understood. Thus, this study endeavors to elucidate the qualitative and quantitative aspects of the phase I metabolism of AOH and AME. To pursue this goal, reduced nicotinamide adenine dinucleotide phosphate (NADPH)-fortified porcine, rat, and human liver microsomes were incubated for 0-10 min with AOH or AME within a concentration range of 1-100 and 1-50 μM, respectively. The decline in the parent toxin concentration was monitored via liquid chromatography coupled to tandem mass spectrometry, whereas coupling to high-resolution mass spectrometry provided insights into the composition of the arising metabolic mixture. The collected quantitative data allowed us to calculate the hepatic intrinsic clearance rates of AOH and AME, marking a notable contribution to the field. Moreover, we unveiled interspecies differences in the pattern and rate of the phase I metabolism of the investigated mycotoxins. The presented findings lay the groundwork for physiologically based toxicokinetic modeling aimed at estimating local concentrations of these mycotoxins in specific organs, enhancing our understanding of their mode of action and adverse health effects.

交替孢霉毒素交替二醇(AOH)和交替二醇 9-O-单甲醚(AME)是一种普遍存在的食品污染物,已知会在体外产生不良影响,但人们对它们的毒代动力学仍缺乏足够的了解。因此,本研究致力于阐明 AOH 和 AME 第一阶段代谢的定性和定量方面。为了实现这一目标,将还原型烟酰胺腺嘌呤二核苷酸磷酸酯(NADPH)强化的猪、大鼠和人肝脏微粒体与浓度范围分别为 1-100 μM 和 1-50 μM 的 AOH 或 AME 培养 0-10 分钟。通过液相色谱法和串联质谱法监测母体毒素浓度的下降,而通过高分辨率质谱法则可以了解所产生的代谢混合物的组成。通过收集到的定量数据,我们计算出了 AOH 和 AME 的肝脏固有清除率,这是对该领域的一项重大贡献。此外,我们还揭示了所研究霉菌毒素第一阶段代谢的模式和速率的种间差异。这些研究结果为建立基于生理的毒物动力学模型奠定了基础,该模型旨在估算这些霉菌毒素在特定器官中的局部浓度,从而加深我们对其作用方式和不良健康影响的了解。
{"title":"Unraveling Interspecies Differences in the Phase I Hepatic Metabolism of Alternariol and Alternariol Monomethyl Ether: Closing Data Gaps for a Comprehensive Risk Assessment.","authors":"Eszter Borsos, Elisabeth Varga, Georg Aichinger, Doris Marko","doi":"10.1021/acs.chemrestox.4c00095","DOIUrl":"10.1021/acs.chemrestox.4c00095","url":null,"abstract":"<p><p>The <i>Alternaria</i> mycotoxins alternariol (AOH) and alternariol 9-<i>O</i>-monomethyl ether (AME) are pervasive food contaminants known to exert adverse effects in vitro, yet their toxicokinetics remain inadequately understood. Thus, this study endeavors to elucidate the qualitative and quantitative aspects of the phase I metabolism of AOH and AME. To pursue this goal, reduced nicotinamide adenine dinucleotide phosphate (NADPH)-fortified porcine, rat, and human liver microsomes were incubated for 0-10 min with AOH or AME within a concentration range of 1-100 and 1-50 μM, respectively. The decline in the parent toxin concentration was monitored via liquid chromatography coupled to tandem mass spectrometry, whereas coupling to high-resolution mass spectrometry provided insights into the composition of the arising metabolic mixture. The collected quantitative data allowed us to calculate the hepatic intrinsic clearance rates of AOH and AME, marking a notable contribution to the field. Moreover, we unveiled interspecies differences in the pattern and rate of the phase I metabolism of the investigated mycotoxins. The presented findings lay the groundwork for physiologically based toxicokinetic modeling aimed at estimating local concentrations of these mycotoxins in specific organs, enhancing our understanding of their mode of action and adverse health effects.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":"1356-1363"},"PeriodicalIF":3.7,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11337205/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141726558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Women in Toxicology Special Issue 妇女毒理学特刊
IF 3.7 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-08-19 DOI: 10.1021/acs.chemrestox.4c0028810.1021/acs.chemrestox.4c00288
Prof. Sayuri Miyamoto, Prof. Dean Naisbitt and Dr. Annette Kraegeloh*, 
{"title":"Women in Toxicology Special Issue","authors":"Prof. Sayuri Miyamoto,&nbsp;Prof. Dean Naisbitt and Dr. Annette Kraegeloh*,&nbsp;","doi":"10.1021/acs.chemrestox.4c0028810.1021/acs.chemrestox.4c00288","DOIUrl":"https://doi.org/10.1021/acs.chemrestox.4c00288https://doi.org/10.1021/acs.chemrestox.4c00288","url":null,"abstract":"","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":"37 8","pages":"1229–1230 1229–1230"},"PeriodicalIF":3.7,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142001784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Determination of Nicotine Protonation State in E-Liquids by Low-Resolution Benchtop NMR Spectroscopy. 利用低分辨率台式 NMR 光谱测定电子液体中尼古丁的质子状态。
IF 3.7 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-08-19 Epub Date: 2024-07-25 DOI: 10.1021/acs.chemrestox.3c00417
Arnout P T Hartendorp, Imane Ahlal, Wouter F Visser, Ernesto P Baloe, Daan G W Lensen, Max J van Alphen, Hetty Nagtegaal, Wilbert de Ruijter, Walther N M Klerx, Reinskje Talhout

Over several years, e-liquids with "nicotine salts" have gained considerable popularity. These e-liquids have a low pH, at which nicotine occurs mostly in its monoprotonated form. Manufacturers usually accomplish this by the addition of an organic acid, such as levulinic acid, benzoic acid, or lactic acid. Nicotine in its protonated form can be more easily inhaled, enhancing the addictiveness and attractiveness of products. Several techniques have been described for measuring the protonation state of nicotine in e-liquids. However, nuclear magnetic resonance (NMR) spectroscopy is particularly suited for this purpose because it can be performed on unaltered e-liquids. In this article, we demonstrate the suitability of a benchtop NMR (60 MHz) instrument for determining the protonation state of nicotine in e-liquids. The method is subsequently applied to measure the protonation state of 33 commercially available e-liquids and to investigate whether the vaping process alters the protonation state of nicotine. For this purpose, the protonation state in the condensed aerosol obtained by automated vaping of different e-liquids was compared with that of the original e-liquids. Two distinct populations were observed in the protonation state of nicotine in commercial e-liquids: free-base (fraction of free-base nicotine αfb > 0.80) and protonated (αfb < 0.40). For 30 e-liquids out of 33, the information on the packaging regarding the presence of nicotine salt was in agreement with the observed protonation state. Three e-liquids contained nicotine salt, even though this was not stated on the packaging. Measuring the protonation state of nicotine before and after (machine) vaping revealed that the protonation state of e-liquids is not affected by vaping. In conclusion, it is possible to determine the nicotine protonation state with the described method. Two clusters can be distinguished in the protonation state of commercial e-liquids, and the protonation state of nicotine remains unchanged after vaping.

几年来,含有 "尼古丁盐 "的电子烟液已相当受欢迎。这些电子液体的 pH 值较低,尼古丁主要以单质子化形式存在。制造商通常通过添加一种有机酸(如乙酰丙酸、苯甲酸或乳酸)来达到这一目的。质子化形式的尼古丁更容易被吸入,从而提高了产品的成瘾性和吸引力。已有多种技术用于测量电子烟液中尼古丁的质子化状态。不过,核磁共振(NMR)光谱法尤其适合这一目的,因为它可以在未改变的电子烟液中进行测量。在本文中,我们展示了台式核磁共振(60 MHz)仪器测定电子液体中尼古丁质子化状态的适用性。随后,我们应用该方法测量了 33 种市售电子液体的质子态,并研究了吸食过程是否会改变尼古丁的质子态。为此,将自动吸入不同电子液体所获得的凝结气溶胶中的质子态与原始电子液体中的质子态进行了比较。在商用电子液体中的尼古丁质子化状态中观察到两种不同的群体:游离基(游离基尼古丁的比例αfb > 0.80)和质子化(αfb < 0.40)。在 33 种电子烟中,有 30 种电子烟包装上的尼古丁盐信息与观察到的质子化状态一致。有三种电子烟含有尼古丁盐,尽管包装上没有说明。在(机器)吸食前后测量尼古丁的质子态发现,电子烟液的质子态不受吸食的影响。总之,使用所述方法可以确定尼古丁的质子状态。商用电子液体的质子态可分为两类,而尼古丁的质子态在吸食后保持不变。
{"title":"Determination of Nicotine Protonation State in E-Liquids by Low-Resolution Benchtop NMR Spectroscopy.","authors":"Arnout P T Hartendorp, Imane Ahlal, Wouter F Visser, Ernesto P Baloe, Daan G W Lensen, Max J van Alphen, Hetty Nagtegaal, Wilbert de Ruijter, Walther N M Klerx, Reinskje Talhout","doi":"10.1021/acs.chemrestox.3c00417","DOIUrl":"10.1021/acs.chemrestox.3c00417","url":null,"abstract":"<p><p>Over several years, e-liquids with \"nicotine salts\" have gained considerable popularity. These e-liquids have a low pH, at which nicotine occurs mostly in its monoprotonated form. Manufacturers usually accomplish this by the addition of an organic acid, such as levulinic acid, benzoic acid, or lactic acid. Nicotine in its protonated form can be more easily inhaled, enhancing the addictiveness and attractiveness of products. Several techniques have been described for measuring the protonation state of nicotine in e-liquids. However, nuclear magnetic resonance (NMR) spectroscopy is particularly suited for this purpose because it can be performed on unaltered e-liquids. In this article, we demonstrate the suitability of a benchtop NMR (60 MHz) instrument for determining the protonation state of nicotine in e-liquids. The method is subsequently applied to measure the protonation state of 33 commercially available e-liquids and to investigate whether the vaping process alters the protonation state of nicotine. For this purpose, the protonation state in the condensed aerosol obtained by automated vaping of different e-liquids was compared with that of the original e-liquids. Two distinct populations were observed in the protonation state of nicotine in commercial e-liquids: free-base (fraction of free-base nicotine α<sub>fb</sub> > 0.80) and protonated (α<sub>fb</sub> < 0.40). For 30 e-liquids out of 33, the information on the packaging regarding the presence of nicotine salt was in agreement with the observed protonation state. Three e-liquids contained nicotine salt, even though this was not stated on the packaging. Measuring the protonation state of nicotine before and after (machine) vaping revealed that the protonation state of e-liquids is not affected by vaping. In conclusion, it is possible to determine the nicotine protonation state with the described method. Two clusters can be distinguished in the protonation state of commercial e-liquids, and the protonation state of nicotine remains unchanged after vaping.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":"1283-1289"},"PeriodicalIF":3.7,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11337208/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141755641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In Vitro Metabolism and p53 Activation of Genotoxic Chemicals: Abiotic CYP Enzyme vs Liver Microsomes. 遗传毒性化学品的体外代谢和 p53 激活:非生物 CYP 酶与肝脏微粒体。
IF 3.7 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-08-19 Epub Date: 2024-06-20 DOI: 10.1021/acs.chemrestox.4c00101
Luise Henneberger, Julia Huchthausen, Jenny Braasch, Maria König, Beate I Escher

Chemicals often require metabolic activation to become genotoxic. Established test guidelines recommend the use of the rat liver S9 fraction or microsomes to introduce metabolic competence to in vitro cell-based bioassays, but the use of animal-derived components in cell culture raises ethical concerns and may lead to quality issues and reproducibility problems. The aim of the present study was to compare the metabolic activation of cyclophosphamide (CPA) and benzo[a]pyrene (BaP) by induced rat liver microsomes and an abiotic cytochrome P450 (CYP) enzyme based on a biomimetic porphyrine catalyst. For the detection of genotoxic effects, the chemicals were tested in a reporter gene assay targeting the activation of the cellular tumor protein p53. Both chemicals were metabolized by the abiotic CYP enzyme and the microsomes. CPA showed no activation of p53 and low cytotoxicity without metabolic activation, but strong activation of p53 and increased cytotoxicity upon incubation with liver microsomes or abiotic CYP enzyme. The effect concentration causing a 1.5-fold induction of p53 activation was very similar with both metabolization systems (within a factor of 1.5), indicating that genotoxic metabolites were formed at comparable concentrations. BaP also showed low cytotoxicity and no p53 activation without metabolic activation. The activation of p53 was detected for BaP upon incubation with active and inactive microsomes at similar concentrations, indicating experimental artifacts caused by the microsomes or NADPH. The activation of BaP with the abiotic CYP enzyme increased the cytotoxicity of BaP by a factor of 8, but no activation of p53 was detected. The results indicate that abiotic CYP enzymes may present an alternative to rat liver S9 fraction or microsomes for the metabolic activation of test chemicals, which are completely free of animal-derived components. However, an amendment of existing test guidelines would require testing of more chemicals and genotoxicity end points.

化学品通常需要经过新陈代谢活化才能产生遗传毒性。既定的测试指南建议使用大鼠肝脏 S9 部分或微粒体为体外细胞生物测定引入代谢能力,但在细胞培养中使用动物源成分会引发伦理问题,并可能导致质量问题和可重复性问题。本研究的目的是比较诱导大鼠肝脏微粒体和基于生物模拟卟啉催化剂的非生物细胞色素 P450(CYP)酶对环磷酰胺(CPA)和苯并[a]芘(BaP)的代谢活化。为了检测基因毒性效应,这些化学物质在以激活细胞肿瘤蛋白 p53 为目标的报告基因检测中进行了测试。这两种化学物质都被非生物 CYP 酶和微粒体代谢。在没有新陈代谢活化的情况下,CPA 对 p53 没有活化作用,细胞毒性较低,但在与肝脏微粒体或非生物 CYP 酶一起培养时,p53 被强烈活化,细胞毒性增加。在两种代谢系统中,诱导 p53 活化 1.5 倍的效应浓度非常相似(在 1.5 倍以内),这表明在浓度相当的情况下会形成具有遗传毒性的代谢物。BaP 也显示出较低的细胞毒性,并且在没有代谢活化的情况下不会激活 p53。在与活性和非活性微粒体以相似的浓度进行孵育时,检测到了 BaP 对 p53 的活化,这表明微粒体或 NADPH 造成了实验误差。用非生物 CYP 酶激活 BaP 后,BaP 的细胞毒性增加了 8 倍,但没有检测到 p53 被激活。结果表明,非生物 CYP 酶可替代大鼠肝脏 S9 部分或微粒体,用于测试化学品的代谢活化,因为它们完全不含动物源成分。不过,要修订现有的测试指南,需要对更多的化学品和遗传毒性终点进行测试。
{"title":"In Vitro Metabolism and p53 Activation of Genotoxic Chemicals: Abiotic CYP Enzyme vs Liver Microsomes.","authors":"Luise Henneberger, Julia Huchthausen, Jenny Braasch, Maria König, Beate I Escher","doi":"10.1021/acs.chemrestox.4c00101","DOIUrl":"10.1021/acs.chemrestox.4c00101","url":null,"abstract":"<p><p>Chemicals often require metabolic activation to become genotoxic. Established test guidelines recommend the use of the rat liver S9 fraction or microsomes to introduce metabolic competence to <i>in vitro</i> cell-based bioassays, but the use of animal-derived components in cell culture raises ethical concerns and may lead to quality issues and reproducibility problems. The aim of the present study was to compare the metabolic activation of cyclophosphamide (CPA) and benzo[<i>a</i>]pyrene (BaP) by induced rat liver microsomes and an abiotic cytochrome P450 (CYP) enzyme based on a biomimetic porphyrine catalyst. For the detection of genotoxic effects, the chemicals were tested in a reporter gene assay targeting the activation of the cellular tumor protein p53. Both chemicals were metabolized by the abiotic CYP enzyme and the microsomes. CPA showed no activation of p53 and low cytotoxicity without metabolic activation, but strong activation of p53 and increased cytotoxicity upon incubation with liver microsomes or abiotic CYP enzyme. The effect concentration causing a 1.5-fold induction of p53 activation was very similar with both metabolization systems (within a factor of 1.5), indicating that genotoxic metabolites were formed at comparable concentrations. BaP also showed low cytotoxicity and no p53 activation without metabolic activation. The activation of p53 was detected for BaP upon incubation with active and inactive microsomes at similar concentrations, indicating experimental artifacts caused by the microsomes or NADPH. The activation of BaP with the abiotic CYP enzyme increased the cytotoxicity of BaP by a factor of 8, but no activation of p53 was detected. The results indicate that abiotic CYP enzymes may present an alternative to rat liver S9 fraction or microsomes for the metabolic activation of test chemicals, which are completely free of animal-derived components. However, an amendment of existing test guidelines would require testing of more chemicals and genotoxicity end points.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":"1364-1373"},"PeriodicalIF":3.7,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11337206/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141430789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conditions Leading to Ketene Formation in Vaping Devices and Implications for Public Health. 导致在吸食器中形成酮烯的条件及其对公共卫生的影响。
IF 3.7 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-08-19 Epub Date: 2024-07-30 DOI: 10.1021/acs.chemrestox.4c00190
Ping Wang, Peyton Jacob, Zhong-Min Wang, Jefferson Fowles, Donal F O'Shea, Jeff Wagner, Kazukiyo Kumagai

The outbreak of e-cigarette or vaping use-associated lung injury (EVALI) in the United States in 2019 led to a total of 2807 hospitalizations with 68 deaths. While the exact causes of this vaping-related lung illness are still being debated, laboratory analyses of products from victims of EVALI have shown that vitamin E acetate (VEA), an additive in some tetrahydrocannabinol (THC)-containing products, is strongly linked to the EVALI outbreak. Because of its similar appearance and viscosity to pure THC oil, VEA was used as a diluent agent in cannabis oils in illicit markets. A potential mechanism for EVALI may involve VEA's thermal decomposition product, ketene, a highly poisonous gas, being generated under vaping conditions. In this study, a novel approach was developed to evaluate ketene production from VEA vaping under measurable temperature conditions in real-world devices. Ketene in generated aerosols was captured by two different chemical agents and analyzed by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography with tandem mass spectrometry (LC-MS/MS). The LC-MS/MS method takes advantage of the high sensitivity and specificity of tandem mass spectrometry and appears to be more suitable than GC-MS for the analysis of large batches of samples. Our results confirmed the formation of ketene when VEA was vaped. The production of ketene increased with repeat puffs and showed a correlation to temperatures (200 to 500 °C) measured within vaping devices. Device battery power strength, which affects the heating temperature, plays an important role in ketene formation. In addition to ketene, the organic oxidant duroquinone was also obtained as another thermal degradation product of VEA. Ketene was not detected when vitamin E was vaped under the same conditions, confirming the importance of the acetate group for its generation.

2019 年,美国爆发了电子烟或吸食电子烟相关肺损伤(EVALI)疫情,共导致 2807 人住院治疗,68 人死亡。虽然这种与吸食有关的肺部疾病的确切原因仍在争论之中,但对 EVALI 受害者的产品进行的实验室分析表明,一些含四氢大麻酚(THC)产品中的添加剂维生素 E 醋酸酯(VEA)与 EVALI 爆发密切相关。由于醋酸乙烯 E 的外观和粘度与纯四氢大麻酚油相似,因此在非法市场上被用作大麻油的稀释剂。EVALI 的一个潜在机制可能是在吸食条件下产生了 VEA 的热分解产物--烯酮(一种剧毒气体)。在这项研究中,我们开发了一种新方法来评估在真实世界设备中可测量温度条件下吸食 VEA 所产生的酮。产生的气溶胶中的酮被两种不同的化学试剂捕获,并通过气相色谱-质谱联用仪(GC-MS)和液相色谱-串联质谱联用仪(LC-MS/MS)进行分析。LC-MS/MS 方法利用了串联质谱的高灵敏度和特异性,似乎比 GC-MS 更适合分析大批量样品。我们的研究结果证实,在吸食 VEA 时会产生酮。酮的生成量随着重复吸食而增加,并与吸食装置内测得的温度(200 至 500 °C)相关。设备电池电量的强弱会影响加热温度,对酮烯的形成起着重要作用。除酮烯外,有机氧化剂杜罗醌也是 VEA 的另一种热降解产物。在相同条件下吸食维生素 E 时,没有检测到烯酮,这证实了醋酸基对烯酮生成的重要性。
{"title":"Conditions Leading to Ketene Formation in Vaping Devices and Implications for Public Health.","authors":"Ping Wang, Peyton Jacob, Zhong-Min Wang, Jefferson Fowles, Donal F O'Shea, Jeff Wagner, Kazukiyo Kumagai","doi":"10.1021/acs.chemrestox.4c00190","DOIUrl":"10.1021/acs.chemrestox.4c00190","url":null,"abstract":"<p><p>The outbreak of e-cigarette or vaping use-associated lung injury (EVALI) in the United States in 2019 led to a total of 2807 hospitalizations with 68 deaths. While the exact causes of this vaping-related lung illness are still being debated, laboratory analyses of products from victims of EVALI have shown that vitamin E acetate (VEA), an additive in some tetrahydrocannabinol (THC)-containing products, is strongly linked to the EVALI outbreak. Because of its similar appearance and viscosity to pure THC oil, VEA was used as a diluent agent in cannabis oils in illicit markets. A potential mechanism for EVALI may involve VEA's thermal decomposition product, ketene, a highly poisonous gas, being generated under vaping conditions. In this study, a novel approach was developed to evaluate ketene production from VEA vaping under measurable temperature conditions in real-world devices. Ketene in generated aerosols was captured by two different chemical agents and analyzed by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography with tandem mass spectrometry (LC-MS/MS). The LC-MS/MS method takes advantage of the high sensitivity and specificity of tandem mass spectrometry and appears to be more suitable than GC-MS for the analysis of large batches of samples. Our results confirmed the formation of ketene when VEA was vaped. The production of ketene increased with repeat puffs and showed a correlation to temperatures (200 to 500 °C) measured within vaping devices. Device battery power strength, which affects the heating temperature, plays an important role in ketene formation. In addition to ketene, the organic oxidant duroquinone was also obtained as another thermal degradation product of VEA. Ketene was not detected when vitamin E was vaped under the same conditions, confirming the importance of the acetate group for its generation.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":"1415-1427"},"PeriodicalIF":3.7,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11423956/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141854141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physical and Chemical Characterization of Aerosols Produced from Experimentally Designed Nicotine Salt-Based E-Liquids. 实验设计的尼古丁盐基电子液体产生的气溶胶的物理和化学特征。
IF 3.7 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-08-19 Epub Date: 2024-07-30 DOI: 10.1021/acs.chemrestox.4c00073
Trevor Harris

Nicotine salt-based e-liquids deliver nicotine more rapidly and efficiently to electronic nicotine delivery system (ENDS) users than freebase nicotine formulations. Nicotine salt-based products represent a substantial majority of the United States ENDS market. Despite the popularity of nicotine salt formulations, the chemical and physical characteristics of aerosols produced by nicotine salt e-liquids are still not well understood. To address this, this study reports the harmful and potentially harmful constituents (HPHCs) and particle sizes of aerosols produced by laboratory-made freebase nicotine and nicotine salt e-liquids. The nicotine salt e-liquids were formulated with benzoic acid, citric acid, lactic acid, malic acid, or oxalic acid. The nicotine salt aerosols had different HPHC profiles than the freebase nicotine aerosols, indicating that the carboxylic acids were not innocent bystanders. The polycarboxylic acid e-liquids containing citric acid, malic acid, or oxalic acid produced higher acrolein yields than the monocarboxylic acid e-liquids containing benzoic acid or lactic acid. Across most PG:VG ratios, nicotine benzoate or nicotine lactate aerosols contained the highest nicotine quantities (in %) and the highest nicotine yields (per milligram of aerosol). Additionally, the nicotine benzoate and nicotine lactate e-liquids produced the highest carboxylic acid yields under all tested conditions. The lower acid yields of the citric, malic, and oxalic acid formulations are potentially due to a combination of factors such as lower transfer efficiencies, lower thermostabilities, and greater susceptibility to side reactions because of their additional carboxyl groups serving as new sites for reactivity. For all nicotine formulations, the particle size characteristics were primarily controlled by the e-liquid solvent ratios, and there were no clear trends between nicotine salt and freebase nicotine aerosols that indicated nicotine protonation affected particle size. The carboxylic acids impacted aerosol output, nicotine delivery, and HPHC yields in distinct ways such that interchanging them in ENDS can potentially cause downstream effects.

与游离尼古丁配方相比,尼古丁盐电子烟液能更迅速、更有效地向电子尼古丁释放系统(ENDS)用户释放尼古丁。尼古丁盐类产品占美国 ENDS 市场的绝大部分。尽管尼古丁盐配方很受欢迎,但人们对尼古丁盐电子液体产生的气溶胶的化学和物理特性仍不甚了解。为了解决这个问题,本研究报告了实验室制造的游离基尼古丁和尼古丁盐电子烟液产生的气溶胶的有害和潜在有害成分(HPHC)和颗粒大小。尼古丁盐电子烟的配方包括苯甲酸、柠檬酸、乳酸、苹果酸或草酸。与游离基尼古丁气溶胶相比,尼古丁盐气溶胶具有不同的 HPHC 特征,这表明羧酸并非无辜的旁观者。与含有苯甲酸或乳酸的单羧酸电子液体相比,含有柠檬酸、苹果酸或草酸的多羧酸电子液体产生的丙烯醛产量更高。在大多数 PG:VG 比率中,苯甲酸尼古丁或乳酸尼古丁气溶胶的尼古丁含量(以百分比计)最高,尼古丁产量(每毫克气溶胶)也最高。此外,在所有测试条件下,苯甲酸尼古丁和乳酸尼古丁电子液体产生的羧酸产量最高。柠檬酸、苹果酸和草酸配方的酸产率较低,这可能是由多种因素共同造成的,如较低的转移效率、较低的热稳定性,以及由于额外的羧基成为新的反应场所而更容易发生副反应。对于所有尼古丁配方,粒度特性主要受电子液体溶剂比率的控制,尼古丁盐和游离基尼古丁气溶胶之间没有明显的趋势表明尼古丁质子化会影响粒度。羧酸以不同的方式影响着气溶胶的输出、尼古丁的释放和高氯氢化合物的产量,因此在 ENDS 中更换羧酸可能会导致下游效应。
{"title":"Physical and Chemical Characterization of Aerosols Produced from Experimentally Designed Nicotine Salt-Based E-Liquids.","authors":"Trevor Harris","doi":"10.1021/acs.chemrestox.4c00073","DOIUrl":"10.1021/acs.chemrestox.4c00073","url":null,"abstract":"<p><p>Nicotine salt-based e-liquids deliver nicotine more rapidly and efficiently to electronic nicotine delivery system (ENDS) users than freebase nicotine formulations. Nicotine salt-based products represent a substantial majority of the United States ENDS market. Despite the popularity of nicotine salt formulations, the chemical and physical characteristics of aerosols produced by nicotine salt e-liquids are still not well understood. To address this, this study reports the harmful and potentially harmful constituents (HPHCs) and particle sizes of aerosols produced by laboratory-made freebase nicotine and nicotine salt e-liquids. The nicotine salt e-liquids were formulated with benzoic acid, citric acid, lactic acid, malic acid, or oxalic acid. The nicotine salt aerosols had different HPHC profiles than the freebase nicotine aerosols, indicating that the carboxylic acids were not innocent bystanders. The polycarboxylic acid e-liquids containing citric acid, malic acid, or oxalic acid produced higher acrolein yields than the monocarboxylic acid e-liquids containing benzoic acid or lactic acid. Across most PG:VG ratios, nicotine benzoate or nicotine lactate aerosols contained the highest nicotine quantities (in %) and the highest nicotine yields (per milligram of aerosol). Additionally, the nicotine benzoate and nicotine lactate e-liquids produced the highest carboxylic acid yields under all tested conditions. The lower acid yields of the citric, malic, and oxalic acid formulations are potentially due to a combination of factors such as lower transfer efficiencies, lower thermostabilities, and greater susceptibility to side reactions because of their additional carboxyl groups serving as new sites for reactivity. For all nicotine formulations, the particle size characteristics were primarily controlled by the e-liquid solvent ratios, and there were no clear trends between nicotine salt and freebase nicotine aerosols that indicated nicotine protonation affected particle size. The carboxylic acids impacted aerosol output, nicotine delivery, and HPHC yields in distinct ways such that interchanging them in ENDS can potentially cause downstream effects.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":"1315-1328"},"PeriodicalIF":3.7,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11337207/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141791184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanisms Mediating the Combined Toxicity of Paraquat and Maneb in SH-SY5Y Neuroblastoma Cells. 百草枯和马内布对 SH-SY5Y 神经母细胞瘤细胞联合毒性的作用机制
IF 3.7 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-08-19 Epub Date: 2024-07-26 DOI: 10.1021/acs.chemrestox.3c00389
Suzana da Silva, Carolina de Lima da Costa, Aline Aita Naime, Danúbia Bonfanti Santos, Marcelo Farina, Dirleise Colle

Epidemiological and experimental studies have demonstrated that combined exposure to the pesticides paraquat (PQ) and maneb (MB) increases the risk of developing Parkinson's disease. However, the mechanisms mediating the toxicity induced by combined exposure to these pesticides are not well understood. The aim of this study was to investigate the mechanism(s) of neurotoxicity induced by exposure to the pesticides PQ and MB isolated or in association (PQ + MB) in SH-SY5Y neuroblastoma cells. PQ + MB exposure for 24 and 48 h decreased cell viability and disrupted cell membrane integrity. In addition, PQ + MB exposure for 12 h decreased the mitochondrial membrane potential. PQ alone increased reactive oxygen species (ROS) and superoxide anion generation and decreased the activity of mitochondrial complexes I and II at 12 h of exposure. MB alone increased ROS generation and depleted intracellular glutathione (GSH) within 6 h of exposure. In contrast, MB exposure for 12 h increased the GSH levels, the glutamate cysteine ligase (GCL, the rate-limiting enzyme in the GSH synthesis pathway) activity, and increased nuclear Nrf2 staining. Pretreatment with buthionine sulfoximine (BSO, a GCL inhibitor) abolished the MB-mediated GSH increase, indicating that MB increases GSH synthesis by upregulating GCL, probably by the activation of the Nrf2/ARE pathway. BSO pretreatment, which did not modify cell viability per se, rendered cells more sensitive to MB-induced toxicity. In contrast, treatment with the antioxidant N-acetylcysteine protected cells from MB-induced toxicity. These findings show that the combined exposure of SH-SY5Y cells to PQ and MB induced a cytotoxic effect higher than that observed when cells were subjected to individual exposures. Such a higher effect seems to be related to additive toxic events resulting from PQ and MB exposures. Thus, our study contributes to a better understanding of the toxicity of PQ and MB in combined exposures.

流行病学和实验研究表明,同时接触农药百草枯(PQ)和马尼布(MB)会增加患帕金森病的风险。然而,人们对联合接触这些农药所诱发毒性的机制还不甚了解。本研究的目的是调查 SH-SY5Y 神经母细胞瘤细胞单独或联合接触(PQ + MB)杀虫剂 PQ 和 MB 后诱发神经毒性的机制。接触 PQ + MB 24 小时和 48 小时会降低细胞活力,破坏细胞膜完整性。此外,PQ + MB 暴露 12 小时会降低线粒体膜电位。暴露 12 小时后,单用 PQ 会增加活性氧(ROS)和超氧阴离子的生成,并降低线粒体复合物 I 和 II 的活性。在接触甲基溴 6 小时内,仅甲基溴就会增加 ROS 的生成并耗尽细胞内谷胱甘肽(GSH)。相比之下,接触甲基溴 12 小时后,谷胱甘肽水平、谷氨酸半胱氨酸连接酶(GCL,谷胱甘肽合成途径中的限速酶)活性均有所提高,核 Nrf2 染色也有所增加。用丁硫酚亚砜亚胺(BSO,一种 GCL 抑制剂)预处理可消除甲基溴介导的 GSH 增加,这表明甲基溴可能通过激活 Nrf2/ARE 通路,通过上调 GCL 来增加 GSH 合成。BSO 预处理本身不会改变细胞活力,但会使细胞对甲基溴诱导的毒性更加敏感。相反,抗氧化剂 N-乙酰半胱氨酸能保护细胞免受 MB 诱导的毒性。这些研究结果表明,SH-SY5Y 细胞同时暴露于 PQ 和 MB 的细胞毒性效应高于单独暴露时观察到的效应。这种较高的效应似乎与 PQ 和 MB 暴露产生的叠加毒性事件有关。因此,我们的研究有助于更好地了解 PQ 和 MB 联合接触时的毒性。
{"title":"Mechanisms Mediating the Combined Toxicity of Paraquat and Maneb in SH-SY5Y Neuroblastoma Cells.","authors":"Suzana da Silva, Carolina de Lima da Costa, Aline Aita Naime, Danúbia Bonfanti Santos, Marcelo Farina, Dirleise Colle","doi":"10.1021/acs.chemrestox.3c00389","DOIUrl":"10.1021/acs.chemrestox.3c00389","url":null,"abstract":"<p><p>Epidemiological and experimental studies have demonstrated that combined exposure to the pesticides paraquat (PQ) and maneb (MB) increases the risk of developing Parkinson's disease. However, the mechanisms mediating the toxicity induced by combined exposure to these pesticides are not well understood. The aim of this study was to investigate the mechanism(s) of neurotoxicity induced by exposure to the pesticides PQ and MB isolated or in association (PQ + MB) in SH-SY5Y neuroblastoma cells. PQ + MB exposure for 24 and 48 h decreased cell viability and disrupted cell membrane integrity. In addition, PQ + MB exposure for 12 h decreased the mitochondrial membrane potential. PQ alone increased reactive oxygen species (ROS) and superoxide anion generation and decreased the activity of mitochondrial complexes I and II at 12 h of exposure. MB alone increased ROS generation and depleted intracellular glutathione (GSH) within 6 h of exposure. In contrast, MB exposure for 12 h increased the GSH levels, the glutamate cysteine ligase (GCL, the rate-limiting enzyme in the GSH synthesis pathway) activity, and increased nuclear Nrf2 staining. Pretreatment with buthionine sulfoximine (BSO, a GCL inhibitor) abolished the MB-mediated GSH increase, indicating that MB increases GSH synthesis by upregulating GCL, probably by the activation of the Nrf2/ARE pathway. BSO pretreatment, which did not modify cell viability per se, rendered cells more sensitive to MB-induced toxicity. In contrast, treatment with the antioxidant <i>N</i>-acetylcysteine protected cells from MB-induced toxicity. These findings show that the combined exposure of SH-SY5Y cells to PQ and MB induced a cytotoxic effect higher than that observed when cells were subjected to individual exposures. Such a higher effect seems to be related to additive toxic events resulting from PQ and MB exposures. Thus, our study contributes to a better understanding of the toxicity of PQ and MB in combined exposures.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":"1269-1282"},"PeriodicalIF":3.7,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11337211/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141755643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrasonic Cigarettes: Chemicals and Cytotoxicity are Similar to Heated-Coil Pod-Style Electronic Cigarettes. 超声波香烟:化学物质和细胞毒性与加热线圈豆荚式电子香烟相似。
IF 3.7 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-08-19 Epub Date: 2024-07-25 DOI: 10.1021/acs.chemrestox.4c00085
Esther E Omaiye, Wentai Luo, Kevin J McWhirter, Prue Talbot

Our purpose was to test the hypothesis that ultrasonic cigarettes (u-cigarettes), which operate at relatively low temperatures, produce aerosols that are less harmful than heated-coil pod-style electronic cigarettes (e-cigarettes). The major chemicals in SURGE u-cigarette fluids and aerosols were quantified, their cytotoxicity and cellular effects were assessed, and a Margin of Exposure risk assessment was performed on chemicals in SURGE fluids. Four SURGE u-cigarette flavor variants ("Blueberry Ice," "Watermelon Ice," "Green Mint," and "Polar Mint") were evaluated. Flavor chemicals were quantified in fluids and aerosols using gas chromatography/mass spectrometry. Cytotoxicity and cell dynamics were assessed using the MTT assay, live-cell imaging, and fluorescence microscopy. WS-23 (a coolant) and total flavor chemical concentrations in SURGE were similar to e-cigarettes, while SURGE nicotine concentrations (13-19 mg/mL) were lower than many fourth generation e-cigarettes. Transfer efficiencies of dominant chemicals to aerosols in SURGE ranged from 44-100%. SURGE fluids and aerosols had four dominant flavor chemicals (>1 mg/mL). Toxic aldehydes were usually higher in SURGE aerosols than in SURGE fluids. SURGE fluids and aerosols had aldehyde concentrations significantly higher than pod-style e-cigarettes. Chemical constituents, solvent ratios, and aldehydes varied among SURGE flavor variants. SURGE fluids and aerosols inhibited cell growth and mitochondrial reductases, produced attenuated and round cells, and depolymerized actin filaments, effects that depended on pod flavor, chemical constituents, and concentration. The MOEs for nicotine, WS-23, and propylene glycol were <100 based on consumption of 1-2 SURGE u-cigarettes/day. Replacing the heating coil with a sonicator did not eliminate chemicals, including aldehydes, in aerosols or diminish toxicity in comparisons between SURGE and other e-cigarette pod products. The high concentrations of nicotine, WS-23, flavor chemicals, and aldehydes and the cytotoxicity of SURGE aerosols do not support the hypothesis that aerosols from u-cigarettes are less harmful than those from e-cigarettes.

我们的目的是验证一个假设,即在相对较低温度下工作的超声波香烟(u-cigarettes)产生的气溶胶比加热线圈吊舱式电子香烟(e-cigarettes)的危害更小。对 SURGE 烟液和气溶胶中的主要化学物质进行了量化,评估了它们的细胞毒性和对细胞的影响,并对 SURGE 烟液中的化学物质进行了暴露风险边际评估。对四种 SURGE 电子烟口味("蓝莓冰"、"西瓜冰"、"绿色薄荷 "和 "极地薄荷")进行了评估。使用气相色谱/质谱法对烟液和气溶胶中的香料化学物质进行了量化。使用 MTT 试验、活细胞成像和荧光显微镜评估了细胞毒性和细胞动态。SURGE中的WS-23(一种冷却剂)和总香味化学品浓度与电子烟相似,而SURGE的尼古丁浓度(13-19毫克/毫升)低于许多第四代电子烟。SURGE 中主要化学物质向气溶胶的转移效率在 44-100% 之间。SURGE 烟液和气溶胶中有四种主要风味化学品(>1 毫克/毫升)。SURGE 气溶胶中的有毒醛通常高于 SURGE 溶剂。SURGE 烟液和气溶胶中的醛浓度明显高于 pod 式电子烟。SURGE 不同口味的化学成分、溶剂比率和醛类含量各不相同。SURGE 烟液和气溶胶会抑制细胞生长和线粒体还原酶,使细胞变小变圆,并使肌动蛋白丝解聚,其效果取决于烟荚的味道、化学成分和浓度。尼古丁、WS-23 和丙二醇的暴露限值分别为
{"title":"Ultrasonic Cigarettes: Chemicals and Cytotoxicity are Similar to Heated-Coil Pod-Style Electronic Cigarettes.","authors":"Esther E Omaiye, Wentai Luo, Kevin J McWhirter, Prue Talbot","doi":"10.1021/acs.chemrestox.4c00085","DOIUrl":"10.1021/acs.chemrestox.4c00085","url":null,"abstract":"<p><p>Our purpose was to test the hypothesis that ultrasonic cigarettes (u-cigarettes), which operate at relatively low temperatures, produce aerosols that are less harmful than heated-coil pod-style electronic cigarettes (e-cigarettes). The major chemicals in SURGE u-cigarette fluids and aerosols were quantified, their cytotoxicity and cellular effects were assessed, and a Margin of Exposure risk assessment was performed on chemicals in SURGE fluids. Four SURGE u-cigarette flavor variants (\"Blueberry Ice,\" \"Watermelon Ice,\" \"Green Mint,\" and \"Polar Mint\") were evaluated. Flavor chemicals were quantified in fluids and aerosols using gas chromatography/mass spectrometry. Cytotoxicity and cell dynamics were assessed using the MTT assay, live-cell imaging, and fluorescence microscopy. WS-23 (a coolant) and total flavor chemical concentrations in SURGE were similar to e-cigarettes, while SURGE nicotine concentrations (13-19 mg/mL) were lower than many fourth generation e-cigarettes. Transfer efficiencies of dominant chemicals to aerosols in SURGE ranged from 44-100%. SURGE fluids and aerosols had four dominant flavor chemicals (>1 mg/mL). Toxic aldehydes were usually higher in SURGE aerosols than in SURGE fluids. SURGE fluids and aerosols had aldehyde concentrations significantly higher than pod-style e-cigarettes. Chemical constituents, solvent ratios, and aldehydes varied among SURGE flavor variants. SURGE fluids and aerosols inhibited cell growth and mitochondrial reductases, produced attenuated and round cells, and depolymerized actin filaments, effects that depended on pod flavor, chemical constituents, and concentration. The MOEs for nicotine, WS-23, and propylene glycol were <100 based on consumption of 1-2 SURGE u-cigarettes/day. Replacing the heating coil with a sonicator did not eliminate chemicals, including aldehydes, in aerosols or diminish toxicity in comparisons between SURGE and other e-cigarette pod products. The high concentrations of nicotine, WS-23, flavor chemicals, and aldehydes and the cytotoxicity of SURGE aerosols do not support the hypothesis that aerosols from u-cigarettes are less harmful than those from e-cigarettes.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":"1329-1343"},"PeriodicalIF":3.7,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11337213/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141755644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Induction of Thymus Atrophy and Disruption of Thymocyte Development by Fipronil through Dysregulation of IL-7-Associated Genes 氟虫腈通过对 IL-7 相关基因的失调诱导胸腺萎缩并破坏胸腺细胞发育
IF 3.7 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-08-14 DOI: 10.1021/acs.chemrestox.4c0006010.1021/acs.chemrestox.4c00060
Jui-Fang Kuo, Hsin-Ying Wu, Chun-Wei Tung, Wei-Hsiang Huang, Chen-Si Lin and Chia-Chi Wang*, 

The susceptibility of the immune system to immunotoxic chemicals is evident, particularly in the thymus, a vital primary immune organ prone to atrophy due to exposure to toxicants. Fipronil (FPN), a widely used insecticide, is of concern due to its potential neurotoxicity, hepatotoxicity, and immunotoxicity. Our previous study showed that FPN disturbed the antigen-specific T-cell functionality in vivo. As T-cell lineage commitment and thymopoiesis are closely interconnected with the normal function of the T-cell-mediated immune responses, this study aims to further examine the toxic effects of FPN on thymocyte development. In this study, 4-week-old BALB/c mice received seven doses of FPN (1, 5, 10 mg/kg) by gavage. Thymus size, medulla/cortex ratio, total thymocyte counts, double-positive thymocyte population, and IL-7-positive cells decreased dose-dependently. IL-7 aids the differentiation of early T-cell precursors into mature T cells, and several essential genes contribute to the maturation of T cells in the thymus. Foxn1 ensures that the thymic microenvironment is suitable for the maturation of T-cell precursors. Lyl1 is involved in specifying lymphoid cells and maintaining T-cell development in the thymus. The c-Kit/SCF collaboration fosters a supportive thymic milieu to promote the formation of functional T cells. The expression of IL-7, IL-7R, c-Kit, SCF, Foxn1, and Lyl1 genes in the thymus was significantly diminished in FPN-treated groups with the concordance with the reduction of IL-7 signaling proteins (IL-7, IL-7R, c-KIT, SCF, LYL1, FOXO3A, and GABPA), suggesting that the dysregulation of T-cell lineage-related genes may contribute to the thymic atrophy induced by FPN. In addition, FPN disturbed the functionality of thymocytes with an increase of IL-4 and IFN-γ production and a decrease of IL-2 secretion after T-cell mitogen stimulation ex vivo. Collectively, FPN significantly deregulated genes related to T-cell progenitor differentiation, survival, and expansion, potentially leading to impaired thymopoiesis.

免疫系统对免疫毒性化学品的易感性是显而易见的,尤其是胸腺,因为胸腺是一个重要的初级免疫器官,容易因接触有毒物质而萎缩。氟虫腈(FPN)是一种广泛使用的杀虫剂,由于其潜在的神经毒性、肝毒性和免疫毒性而备受关注。我们之前的研究表明,氟虫腈会干扰体内抗原特异性 T 细胞的功能。由于T细胞系的承诺和胸腺的生成与T细胞介导的免疫反应的正常功能密切相关,本研究旨在进一步研究FPN对胸腺细胞发育的毒性影响。在这项研究中,4周大的BALB/c小鼠通过灌胃接受了7个剂量的FPN(1、5、10毫克/千克)。胸腺大小、髓质/皮质比率、胸腺细胞总数、双阳性胸腺细胞群和IL-7阳性细胞的减少与剂量有关。IL-7 可帮助早期 T 细胞前体分化为成熟的 T 细胞,有几个重要基因有助于胸腺中 T 细胞的成熟。Foxn1 确保胸腺微环境适合 T 细胞前体的成熟。Lyl1 参与淋巴细胞的分化,并维持胸腺中 T 细胞的发育。c-Kit/SCF合作营造了一个支持性胸腺环境,以促进功能性T细胞的形成。在 FPN 处理组中,胸腺中 IL-7、IL-7R、c-Kit、SCF、Foxn1 和 Lyl1 基因的表达明显减少,与 IL-7 信号蛋白(IL-7、IL-7R、c-KIT、SCF、LYL1、FOXO3A 和 GABPA)的减少一致,表明 T 细胞系相关基因的失调可能是 FPN 诱导胸腺萎缩的原因之一。此外,FPN干扰了胸腺细胞的功能,在体内T细胞有丝分裂原刺激后,IL-4和IFN-γ的产生增加,IL-2的分泌减少。总之,FPN会明显改变与T细胞祖细胞分化、存活和扩增有关的基因,从而可能导致胸腺造血功能受损。
{"title":"Induction of Thymus Atrophy and Disruption of Thymocyte Development by Fipronil through Dysregulation of IL-7-Associated Genes","authors":"Jui-Fang Kuo,&nbsp;Hsin-Ying Wu,&nbsp;Chun-Wei Tung,&nbsp;Wei-Hsiang Huang,&nbsp;Chen-Si Lin and Chia-Chi Wang*,&nbsp;","doi":"10.1021/acs.chemrestox.4c0006010.1021/acs.chemrestox.4c00060","DOIUrl":"https://doi.org/10.1021/acs.chemrestox.4c00060https://doi.org/10.1021/acs.chemrestox.4c00060","url":null,"abstract":"<p >The susceptibility of the immune system to immunotoxic chemicals is evident, particularly in the thymus, a vital primary immune organ prone to atrophy due to exposure to toxicants. Fipronil (FPN), a widely used insecticide, is of concern due to its potential neurotoxicity, hepatotoxicity, and immunotoxicity. Our previous study showed that FPN disturbed the antigen-specific T-cell functionality <i>in vivo</i>. As T-cell lineage commitment and thymopoiesis are closely interconnected with the normal function of the T-cell-mediated immune responses, this study aims to further examine the toxic effects of FPN on thymocyte development. In this study, 4-week-old BALB/c mice received seven doses of FPN (1, 5, 10 mg/kg) by gavage. Thymus size, medulla/cortex ratio, total thymocyte counts, double-positive thymocyte population, and IL-7-positive cells decreased dose-dependently. IL-7 aids the differentiation of early T-cell precursors into mature T cells, and several essential genes contribute to the maturation of T cells in the thymus. <i>Foxn</i>1 ensures that the thymic microenvironment is suitable for the maturation of T-cell precursors. <i>Lyl</i>1 is involved in specifying lymphoid cells and maintaining T-cell development in the thymus. The <i>c-Kit/SCF</i> collaboration fosters a supportive thymic milieu to promote the formation of functional T cells. The expression of <i>IL-</i>7, <i>IL-</i>7<i>R</i>, <i>c-Kit</i>, <i>SCF</i>, <i>Foxn</i>1, and <i>Lyl</i>1 genes in the thymus was significantly diminished in FPN-treated groups with the concordance with the reduction of IL-7 signaling proteins (IL-7, IL-7R, c-KIT, SCF, LYL1, FOXO3A, and GABPA), suggesting that the dysregulation of T-cell lineage-related genes may contribute to the thymic atrophy induced by FPN. In addition, FPN disturbed the functionality of thymocytes with an increase of IL-4 and IFN-γ production and a decrease of IL-2 secretion after T-cell mitogen stimulation <i>ex vivo</i>. Collectively, FPN significantly deregulated genes related to T-cell progenitor differentiation, survival, and expansion, potentially leading to impaired thymopoiesis.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":"37 9","pages":"1488–1500 1488–1500"},"PeriodicalIF":3.7,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.chemrestox.4c00060","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142234593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Chemical Research in Toxicology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1