Pub Date : 2024-08-19DOI: 10.1021/acs.chemrestox.4c0023410.1021/acs.chemrestox.4c00234
Krishna Moorthy Manchuri*, Mahammad Ali Shaik, Venkata Subba Reddy Gopireddy, Naziya Sultana and Sreenivasarao Gogineni,
Since 2018, N-nitrosamine impurities have become a widespread concern in the global regulatory landscape of pharmaceutical products. This concern arises due to their potential for contamination, toxicity, carcinogenicity, and mutagenicity and their presence in many active pharmaceutical ingredients, drug products, and other matrices. N-Nitrosamine impurities in humans can lead to severe chemical toxicity effects. These include carcinogenic effects, metabolic disruptions, reproductive harm, liver diseases, obesity, DNA damage, cell death, chromosomal alterations, birth defects, and pregnancy loss. They are particularly known to cause cancer (tumors) in various organs and tissues such as the liver, lungs, nasal cavity, esophagus, pancreas, stomach, urinary bladder, colon, kidneys, and central nervous system. Additionally, N-nitrosamine impurities may contribute to the development of Alzheimer’s and Parkinson’s diseases and type-2 diabetes. Therefore, it is very important to control or avoid them by enhancing effective analytical methodologies using cutting-edge analytical techniques such as LC-MS, GC-MS, CE-MS, SFC, etc. Moreover, these analytical methods need to be sensitive and selective with suitable precision and accuracy, so that the actual amounts of N-nitrosamine impurities can be detected and quantified appropriately in drugs. Regulatory agencies such as the US FDA, EMA, ICH, WHO, etc. need to focus more on the hazards of N-nitrosamine impurities by providing guidance and regular updates to drug manufacturers and applicants. Similarly, drug manufacturers should be more vigilant to avoid nitrosating agents and secondary amines during the manufacturing processes. Numerous review articles have been published recently by various researchers, focusing on N-nitrosamine impurities found in previously notified products, including sartans, metformin, and ranitidine. These impurities have also been detected in a wide range of other products. Consequently, this review aims to concentrate on products recently reported to contain N-nitrosamine impurities. These products include rifampicin, champix, famotidine, nizatidine, atorvastatin, bumetanide, itraconazole, diovan, enalapril, propranolol, lisinopril, duloxetine, rivaroxaban, pioglitazones, glifizones, cilostazol, and sunitinib.
{"title":"Analytical Methodologies to Detect N-Nitrosamine Impurities in Active Pharmaceutical Ingredients, Drug Products and Other Matrices","authors":"Krishna Moorthy Manchuri*, Mahammad Ali Shaik, Venkata Subba Reddy Gopireddy, Naziya Sultana and Sreenivasarao Gogineni, ","doi":"10.1021/acs.chemrestox.4c0023410.1021/acs.chemrestox.4c00234","DOIUrl":"https://doi.org/10.1021/acs.chemrestox.4c00234https://doi.org/10.1021/acs.chemrestox.4c00234","url":null,"abstract":"<p >Since 2018, N-nitrosamine impurities have become a widespread concern in the global regulatory landscape of pharmaceutical products. This concern arises due to their potential for contamination, toxicity, carcinogenicity, and mutagenicity and their presence in many active pharmaceutical ingredients, drug products, and other matrices. N-Nitrosamine impurities in humans can lead to severe chemical toxicity effects. These include carcinogenic effects, metabolic disruptions, reproductive harm, liver diseases, obesity, DNA damage, cell death, chromosomal alterations, birth defects, and pregnancy loss. They are particularly known to cause cancer (tumors) in various organs and tissues such as the liver, lungs, nasal cavity, esophagus, pancreas, stomach, urinary bladder, colon, kidneys, and central nervous system. Additionally, N-nitrosamine impurities may contribute to the development of Alzheimer’s and Parkinson’s diseases and type-2 diabetes. Therefore, it is very important to control or avoid them by enhancing effective analytical methodologies using cutting-edge analytical techniques such as LC-MS, GC-MS, CE-MS, SFC, etc. Moreover, these analytical methods need to be sensitive and selective with suitable precision and accuracy, so that the actual amounts of N-nitrosamine impurities can be detected and quantified appropriately in drugs. Regulatory agencies such as the US FDA, EMA, ICH, WHO, etc. need to focus more on the hazards of N-nitrosamine impurities by providing guidance and regular updates to drug manufacturers and applicants. Similarly, drug manufacturers should be more vigilant to avoid nitrosating agents and secondary amines during the manufacturing processes. Numerous review articles have been published recently by various researchers, focusing on N-nitrosamine impurities found in previously notified products, including sartans, metformin, and ranitidine. These impurities have also been detected in a wide range of other products. Consequently, this review aims to concentrate on products recently reported to contain N-nitrosamine impurities. These products include rifampicin, champix, famotidine, nizatidine, atorvastatin, bumetanide, itraconazole, diovan, enalapril, propranolol, lisinopril, duloxetine, rivaroxaban, pioglitazones, glifizones, cilostazol, and sunitinib.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":"37 9","pages":"1456–1483 1456–1483"},"PeriodicalIF":3.7,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.chemrestox.4c00234","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142234599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-19Epub Date: 2024-07-19DOI: 10.1021/acs.chemrestox.4c00095
Eszter Borsos, Elisabeth Varga, Georg Aichinger, Doris Marko
The Alternaria mycotoxins alternariol (AOH) and alternariol 9-O-monomethyl ether (AME) are pervasive food contaminants known to exert adverse effects in vitro, yet their toxicokinetics remain inadequately understood. Thus, this study endeavors to elucidate the qualitative and quantitative aspects of the phase I metabolism of AOH and AME. To pursue this goal, reduced nicotinamide adenine dinucleotide phosphate (NADPH)-fortified porcine, rat, and human liver microsomes were incubated for 0-10 min with AOH or AME within a concentration range of 1-100 and 1-50 μM, respectively. The decline in the parent toxin concentration was monitored via liquid chromatography coupled to tandem mass spectrometry, whereas coupling to high-resolution mass spectrometry provided insights into the composition of the arising metabolic mixture. The collected quantitative data allowed us to calculate the hepatic intrinsic clearance rates of AOH and AME, marking a notable contribution to the field. Moreover, we unveiled interspecies differences in the pattern and rate of the phase I metabolism of the investigated mycotoxins. The presented findings lay the groundwork for physiologically based toxicokinetic modeling aimed at estimating local concentrations of these mycotoxins in specific organs, enhancing our understanding of their mode of action and adverse health effects.
{"title":"Unraveling Interspecies Differences in the Phase I Hepatic Metabolism of Alternariol and Alternariol Monomethyl Ether: Closing Data Gaps for a Comprehensive Risk Assessment.","authors":"Eszter Borsos, Elisabeth Varga, Georg Aichinger, Doris Marko","doi":"10.1021/acs.chemrestox.4c00095","DOIUrl":"10.1021/acs.chemrestox.4c00095","url":null,"abstract":"<p><p>The <i>Alternaria</i> mycotoxins alternariol (AOH) and alternariol 9-<i>O</i>-monomethyl ether (AME) are pervasive food contaminants known to exert adverse effects in vitro, yet their toxicokinetics remain inadequately understood. Thus, this study endeavors to elucidate the qualitative and quantitative aspects of the phase I metabolism of AOH and AME. To pursue this goal, reduced nicotinamide adenine dinucleotide phosphate (NADPH)-fortified porcine, rat, and human liver microsomes were incubated for 0-10 min with AOH or AME within a concentration range of 1-100 and 1-50 μM, respectively. The decline in the parent toxin concentration was monitored via liquid chromatography coupled to tandem mass spectrometry, whereas coupling to high-resolution mass spectrometry provided insights into the composition of the arising metabolic mixture. The collected quantitative data allowed us to calculate the hepatic intrinsic clearance rates of AOH and AME, marking a notable contribution to the field. Moreover, we unveiled interspecies differences in the pattern and rate of the phase I metabolism of the investigated mycotoxins. The presented findings lay the groundwork for physiologically based toxicokinetic modeling aimed at estimating local concentrations of these mycotoxins in specific organs, enhancing our understanding of their mode of action and adverse health effects.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":"1356-1363"},"PeriodicalIF":3.7,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11337205/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141726558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-19DOI: 10.1021/acs.chemrestox.4c0028810.1021/acs.chemrestox.4c00288
Prof. Sayuri Miyamoto, Prof. Dean Naisbitt and Dr. Annette Kraegeloh*,
{"title":"Women in Toxicology Special Issue","authors":"Prof. Sayuri Miyamoto, Prof. Dean Naisbitt and Dr. Annette Kraegeloh*, ","doi":"10.1021/acs.chemrestox.4c0028810.1021/acs.chemrestox.4c00288","DOIUrl":"https://doi.org/10.1021/acs.chemrestox.4c00288https://doi.org/10.1021/acs.chemrestox.4c00288","url":null,"abstract":"","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":"37 8","pages":"1229–1230 1229–1230"},"PeriodicalIF":3.7,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142001784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-19Epub Date: 2024-07-25DOI: 10.1021/acs.chemrestox.3c00417
Arnout P T Hartendorp, Imane Ahlal, Wouter F Visser, Ernesto P Baloe, Daan G W Lensen, Max J van Alphen, Hetty Nagtegaal, Wilbert de Ruijter, Walther N M Klerx, Reinskje Talhout
Over several years, e-liquids with "nicotine salts" have gained considerable popularity. These e-liquids have a low pH, at which nicotine occurs mostly in its monoprotonated form. Manufacturers usually accomplish this by the addition of an organic acid, such as levulinic acid, benzoic acid, or lactic acid. Nicotine in its protonated form can be more easily inhaled, enhancing the addictiveness and attractiveness of products. Several techniques have been described for measuring the protonation state of nicotine in e-liquids. However, nuclear magnetic resonance (NMR) spectroscopy is particularly suited for this purpose because it can be performed on unaltered e-liquids. In this article, we demonstrate the suitability of a benchtop NMR (60 MHz) instrument for determining the protonation state of nicotine in e-liquids. The method is subsequently applied to measure the protonation state of 33 commercially available e-liquids and to investigate whether the vaping process alters the protonation state of nicotine. For this purpose, the protonation state in the condensed aerosol obtained by automated vaping of different e-liquids was compared with that of the original e-liquids. Two distinct populations were observed in the protonation state of nicotine in commercial e-liquids: free-base (fraction of free-base nicotine αfb > 0.80) and protonated (αfb < 0.40). For 30 e-liquids out of 33, the information on the packaging regarding the presence of nicotine salt was in agreement with the observed protonation state. Three e-liquids contained nicotine salt, even though this was not stated on the packaging. Measuring the protonation state of nicotine before and after (machine) vaping revealed that the protonation state of e-liquids is not affected by vaping. In conclusion, it is possible to determine the nicotine protonation state with the described method. Two clusters can be distinguished in the protonation state of commercial e-liquids, and the protonation state of nicotine remains unchanged after vaping.
{"title":"Determination of Nicotine Protonation State in E-Liquids by Low-Resolution Benchtop NMR Spectroscopy.","authors":"Arnout P T Hartendorp, Imane Ahlal, Wouter F Visser, Ernesto P Baloe, Daan G W Lensen, Max J van Alphen, Hetty Nagtegaal, Wilbert de Ruijter, Walther N M Klerx, Reinskje Talhout","doi":"10.1021/acs.chemrestox.3c00417","DOIUrl":"10.1021/acs.chemrestox.3c00417","url":null,"abstract":"<p><p>Over several years, e-liquids with \"nicotine salts\" have gained considerable popularity. These e-liquids have a low pH, at which nicotine occurs mostly in its monoprotonated form. Manufacturers usually accomplish this by the addition of an organic acid, such as levulinic acid, benzoic acid, or lactic acid. Nicotine in its protonated form can be more easily inhaled, enhancing the addictiveness and attractiveness of products. Several techniques have been described for measuring the protonation state of nicotine in e-liquids. However, nuclear magnetic resonance (NMR) spectroscopy is particularly suited for this purpose because it can be performed on unaltered e-liquids. In this article, we demonstrate the suitability of a benchtop NMR (60 MHz) instrument for determining the protonation state of nicotine in e-liquids. The method is subsequently applied to measure the protonation state of 33 commercially available e-liquids and to investigate whether the vaping process alters the protonation state of nicotine. For this purpose, the protonation state in the condensed aerosol obtained by automated vaping of different e-liquids was compared with that of the original e-liquids. Two distinct populations were observed in the protonation state of nicotine in commercial e-liquids: free-base (fraction of free-base nicotine α<sub>fb</sub> > 0.80) and protonated (α<sub>fb</sub> < 0.40). For 30 e-liquids out of 33, the information on the packaging regarding the presence of nicotine salt was in agreement with the observed protonation state. Three e-liquids contained nicotine salt, even though this was not stated on the packaging. Measuring the protonation state of nicotine before and after (machine) vaping revealed that the protonation state of e-liquids is not affected by vaping. In conclusion, it is possible to determine the nicotine protonation state with the described method. Two clusters can be distinguished in the protonation state of commercial e-liquids, and the protonation state of nicotine remains unchanged after vaping.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":"1283-1289"},"PeriodicalIF":3.7,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11337208/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141755641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-19Epub Date: 2024-06-20DOI: 10.1021/acs.chemrestox.4c00101
Luise Henneberger, Julia Huchthausen, Jenny Braasch, Maria König, Beate I Escher
Chemicals often require metabolic activation to become genotoxic. Established test guidelines recommend the use of the rat liver S9 fraction or microsomes to introduce metabolic competence to in vitro cell-based bioassays, but the use of animal-derived components in cell culture raises ethical concerns and may lead to quality issues and reproducibility problems. The aim of the present study was to compare the metabolic activation of cyclophosphamide (CPA) and benzo[a]pyrene (BaP) by induced rat liver microsomes and an abiotic cytochrome P450 (CYP) enzyme based on a biomimetic porphyrine catalyst. For the detection of genotoxic effects, the chemicals were tested in a reporter gene assay targeting the activation of the cellular tumor protein p53. Both chemicals were metabolized by the abiotic CYP enzyme and the microsomes. CPA showed no activation of p53 and low cytotoxicity without metabolic activation, but strong activation of p53 and increased cytotoxicity upon incubation with liver microsomes or abiotic CYP enzyme. The effect concentration causing a 1.5-fold induction of p53 activation was very similar with both metabolization systems (within a factor of 1.5), indicating that genotoxic metabolites were formed at comparable concentrations. BaP also showed low cytotoxicity and no p53 activation without metabolic activation. The activation of p53 was detected for BaP upon incubation with active and inactive microsomes at similar concentrations, indicating experimental artifacts caused by the microsomes or NADPH. The activation of BaP with the abiotic CYP enzyme increased the cytotoxicity of BaP by a factor of 8, but no activation of p53 was detected. The results indicate that abiotic CYP enzymes may present an alternative to rat liver S9 fraction or microsomes for the metabolic activation of test chemicals, which are completely free of animal-derived components. However, an amendment of existing test guidelines would require testing of more chemicals and genotoxicity end points.
{"title":"In Vitro Metabolism and p53 Activation of Genotoxic Chemicals: Abiotic CYP Enzyme vs Liver Microsomes.","authors":"Luise Henneberger, Julia Huchthausen, Jenny Braasch, Maria König, Beate I Escher","doi":"10.1021/acs.chemrestox.4c00101","DOIUrl":"10.1021/acs.chemrestox.4c00101","url":null,"abstract":"<p><p>Chemicals often require metabolic activation to become genotoxic. Established test guidelines recommend the use of the rat liver S9 fraction or microsomes to introduce metabolic competence to <i>in vitro</i> cell-based bioassays, but the use of animal-derived components in cell culture raises ethical concerns and may lead to quality issues and reproducibility problems. The aim of the present study was to compare the metabolic activation of cyclophosphamide (CPA) and benzo[<i>a</i>]pyrene (BaP) by induced rat liver microsomes and an abiotic cytochrome P450 (CYP) enzyme based on a biomimetic porphyrine catalyst. For the detection of genotoxic effects, the chemicals were tested in a reporter gene assay targeting the activation of the cellular tumor protein p53. Both chemicals were metabolized by the abiotic CYP enzyme and the microsomes. CPA showed no activation of p53 and low cytotoxicity without metabolic activation, but strong activation of p53 and increased cytotoxicity upon incubation with liver microsomes or abiotic CYP enzyme. The effect concentration causing a 1.5-fold induction of p53 activation was very similar with both metabolization systems (within a factor of 1.5), indicating that genotoxic metabolites were formed at comparable concentrations. BaP also showed low cytotoxicity and no p53 activation without metabolic activation. The activation of p53 was detected for BaP upon incubation with active and inactive microsomes at similar concentrations, indicating experimental artifacts caused by the microsomes or NADPH. The activation of BaP with the abiotic CYP enzyme increased the cytotoxicity of BaP by a factor of 8, but no activation of p53 was detected. The results indicate that abiotic CYP enzymes may present an alternative to rat liver S9 fraction or microsomes for the metabolic activation of test chemicals, which are completely free of animal-derived components. However, an amendment of existing test guidelines would require testing of more chemicals and genotoxicity end points.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":"1364-1373"},"PeriodicalIF":3.7,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11337206/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141430789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-19Epub Date: 2024-07-30DOI: 10.1021/acs.chemrestox.4c00190
Ping Wang, Peyton Jacob, Zhong-Min Wang, Jefferson Fowles, Donal F O'Shea, Jeff Wagner, Kazukiyo Kumagai
The outbreak of e-cigarette or vaping use-associated lung injury (EVALI) in the United States in 2019 led to a total of 2807 hospitalizations with 68 deaths. While the exact causes of this vaping-related lung illness are still being debated, laboratory analyses of products from victims of EVALI have shown that vitamin E acetate (VEA), an additive in some tetrahydrocannabinol (THC)-containing products, is strongly linked to the EVALI outbreak. Because of its similar appearance and viscosity to pure THC oil, VEA was used as a diluent agent in cannabis oils in illicit markets. A potential mechanism for EVALI may involve VEA's thermal decomposition product, ketene, a highly poisonous gas, being generated under vaping conditions. In this study, a novel approach was developed to evaluate ketene production from VEA vaping under measurable temperature conditions in real-world devices. Ketene in generated aerosols was captured by two different chemical agents and analyzed by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography with tandem mass spectrometry (LC-MS/MS). The LC-MS/MS method takes advantage of the high sensitivity and specificity of tandem mass spectrometry and appears to be more suitable than GC-MS for the analysis of large batches of samples. Our results confirmed the formation of ketene when VEA was vaped. The production of ketene increased with repeat puffs and showed a correlation to temperatures (200 to 500 °C) measured within vaping devices. Device battery power strength, which affects the heating temperature, plays an important role in ketene formation. In addition to ketene, the organic oxidant duroquinone was also obtained as another thermal degradation product of VEA. Ketene was not detected when vitamin E was vaped under the same conditions, confirming the importance of the acetate group for its generation.
2019 年,美国爆发了电子烟或吸食电子烟相关肺损伤(EVALI)疫情,共导致 2807 人住院治疗,68 人死亡。虽然这种与吸食有关的肺部疾病的确切原因仍在争论之中,但对 EVALI 受害者的产品进行的实验室分析表明,一些含四氢大麻酚(THC)产品中的添加剂维生素 E 醋酸酯(VEA)与 EVALI 爆发密切相关。由于醋酸乙烯 E 的外观和粘度与纯四氢大麻酚油相似,因此在非法市场上被用作大麻油的稀释剂。EVALI 的一个潜在机制可能是在吸食条件下产生了 VEA 的热分解产物--烯酮(一种剧毒气体)。在这项研究中,我们开发了一种新方法来评估在真实世界设备中可测量温度条件下吸食 VEA 所产生的酮。产生的气溶胶中的酮被两种不同的化学试剂捕获,并通过气相色谱-质谱联用仪(GC-MS)和液相色谱-串联质谱联用仪(LC-MS/MS)进行分析。LC-MS/MS 方法利用了串联质谱的高灵敏度和特异性,似乎比 GC-MS 更适合分析大批量样品。我们的研究结果证实,在吸食 VEA 时会产生酮。酮的生成量随着重复吸食而增加,并与吸食装置内测得的温度(200 至 500 °C)相关。设备电池电量的强弱会影响加热温度,对酮烯的形成起着重要作用。除酮烯外,有机氧化剂杜罗醌也是 VEA 的另一种热降解产物。在相同条件下吸食维生素 E 时,没有检测到烯酮,这证实了醋酸基对烯酮生成的重要性。
{"title":"Conditions Leading to Ketene Formation in Vaping Devices and Implications for Public Health.","authors":"Ping Wang, Peyton Jacob, Zhong-Min Wang, Jefferson Fowles, Donal F O'Shea, Jeff Wagner, Kazukiyo Kumagai","doi":"10.1021/acs.chemrestox.4c00190","DOIUrl":"10.1021/acs.chemrestox.4c00190","url":null,"abstract":"<p><p>The outbreak of e-cigarette or vaping use-associated lung injury (EVALI) in the United States in 2019 led to a total of 2807 hospitalizations with 68 deaths. While the exact causes of this vaping-related lung illness are still being debated, laboratory analyses of products from victims of EVALI have shown that vitamin E acetate (VEA), an additive in some tetrahydrocannabinol (THC)-containing products, is strongly linked to the EVALI outbreak. Because of its similar appearance and viscosity to pure THC oil, VEA was used as a diluent agent in cannabis oils in illicit markets. A potential mechanism for EVALI may involve VEA's thermal decomposition product, ketene, a highly poisonous gas, being generated under vaping conditions. In this study, a novel approach was developed to evaluate ketene production from VEA vaping under measurable temperature conditions in real-world devices. Ketene in generated aerosols was captured by two different chemical agents and analyzed by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography with tandem mass spectrometry (LC-MS/MS). The LC-MS/MS method takes advantage of the high sensitivity and specificity of tandem mass spectrometry and appears to be more suitable than GC-MS for the analysis of large batches of samples. Our results confirmed the formation of ketene when VEA was vaped. The production of ketene increased with repeat puffs and showed a correlation to temperatures (200 to 500 °C) measured within vaping devices. Device battery power strength, which affects the heating temperature, plays an important role in ketene formation. In addition to ketene, the organic oxidant duroquinone was also obtained as another thermal degradation product of VEA. Ketene was not detected when vitamin E was vaped under the same conditions, confirming the importance of the acetate group for its generation.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":"1415-1427"},"PeriodicalIF":3.7,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11423956/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141854141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-19Epub Date: 2024-07-30DOI: 10.1021/acs.chemrestox.4c00073
Trevor Harris
Nicotine salt-based e-liquids deliver nicotine more rapidly and efficiently to electronic nicotine delivery system (ENDS) users than freebase nicotine formulations. Nicotine salt-based products represent a substantial majority of the United States ENDS market. Despite the popularity of nicotine salt formulations, the chemical and physical characteristics of aerosols produced by nicotine salt e-liquids are still not well understood. To address this, this study reports the harmful and potentially harmful constituents (HPHCs) and particle sizes of aerosols produced by laboratory-made freebase nicotine and nicotine salt e-liquids. The nicotine salt e-liquids were formulated with benzoic acid, citric acid, lactic acid, malic acid, or oxalic acid. The nicotine salt aerosols had different HPHC profiles than the freebase nicotine aerosols, indicating that the carboxylic acids were not innocent bystanders. The polycarboxylic acid e-liquids containing citric acid, malic acid, or oxalic acid produced higher acrolein yields than the monocarboxylic acid e-liquids containing benzoic acid or lactic acid. Across most PG:VG ratios, nicotine benzoate or nicotine lactate aerosols contained the highest nicotine quantities (in %) and the highest nicotine yields (per milligram of aerosol). Additionally, the nicotine benzoate and nicotine lactate e-liquids produced the highest carboxylic acid yields under all tested conditions. The lower acid yields of the citric, malic, and oxalic acid formulations are potentially due to a combination of factors such as lower transfer efficiencies, lower thermostabilities, and greater susceptibility to side reactions because of their additional carboxyl groups serving as new sites for reactivity. For all nicotine formulations, the particle size characteristics were primarily controlled by the e-liquid solvent ratios, and there were no clear trends between nicotine salt and freebase nicotine aerosols that indicated nicotine protonation affected particle size. The carboxylic acids impacted aerosol output, nicotine delivery, and HPHC yields in distinct ways such that interchanging them in ENDS can potentially cause downstream effects.
{"title":"Physical and Chemical Characterization of Aerosols Produced from Experimentally Designed Nicotine Salt-Based E-Liquids.","authors":"Trevor Harris","doi":"10.1021/acs.chemrestox.4c00073","DOIUrl":"10.1021/acs.chemrestox.4c00073","url":null,"abstract":"<p><p>Nicotine salt-based e-liquids deliver nicotine more rapidly and efficiently to electronic nicotine delivery system (ENDS) users than freebase nicotine formulations. Nicotine salt-based products represent a substantial majority of the United States ENDS market. Despite the popularity of nicotine salt formulations, the chemical and physical characteristics of aerosols produced by nicotine salt e-liquids are still not well understood. To address this, this study reports the harmful and potentially harmful constituents (HPHCs) and particle sizes of aerosols produced by laboratory-made freebase nicotine and nicotine salt e-liquids. The nicotine salt e-liquids were formulated with benzoic acid, citric acid, lactic acid, malic acid, or oxalic acid. The nicotine salt aerosols had different HPHC profiles than the freebase nicotine aerosols, indicating that the carboxylic acids were not innocent bystanders. The polycarboxylic acid e-liquids containing citric acid, malic acid, or oxalic acid produced higher acrolein yields than the monocarboxylic acid e-liquids containing benzoic acid or lactic acid. Across most PG:VG ratios, nicotine benzoate or nicotine lactate aerosols contained the highest nicotine quantities (in %) and the highest nicotine yields (per milligram of aerosol). Additionally, the nicotine benzoate and nicotine lactate e-liquids produced the highest carboxylic acid yields under all tested conditions. The lower acid yields of the citric, malic, and oxalic acid formulations are potentially due to a combination of factors such as lower transfer efficiencies, lower thermostabilities, and greater susceptibility to side reactions because of their additional carboxyl groups serving as new sites for reactivity. For all nicotine formulations, the particle size characteristics were primarily controlled by the e-liquid solvent ratios, and there were no clear trends between nicotine salt and freebase nicotine aerosols that indicated nicotine protonation affected particle size. The carboxylic acids impacted aerosol output, nicotine delivery, and HPHC yields in distinct ways such that interchanging them in ENDS can potentially cause downstream effects.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":"1315-1328"},"PeriodicalIF":3.7,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11337207/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141791184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-19Epub Date: 2024-07-26DOI: 10.1021/acs.chemrestox.3c00389
Suzana da Silva, Carolina de Lima da Costa, Aline Aita Naime, Danúbia Bonfanti Santos, Marcelo Farina, Dirleise Colle
Epidemiological and experimental studies have demonstrated that combined exposure to the pesticides paraquat (PQ) and maneb (MB) increases the risk of developing Parkinson's disease. However, the mechanisms mediating the toxicity induced by combined exposure to these pesticides are not well understood. The aim of this study was to investigate the mechanism(s) of neurotoxicity induced by exposure to the pesticides PQ and MB isolated or in association (PQ + MB) in SH-SY5Y neuroblastoma cells. PQ + MB exposure for 24 and 48 h decreased cell viability and disrupted cell membrane integrity. In addition, PQ + MB exposure for 12 h decreased the mitochondrial membrane potential. PQ alone increased reactive oxygen species (ROS) and superoxide anion generation and decreased the activity of mitochondrial complexes I and II at 12 h of exposure. MB alone increased ROS generation and depleted intracellular glutathione (GSH) within 6 h of exposure. In contrast, MB exposure for 12 h increased the GSH levels, the glutamate cysteine ligase (GCL, the rate-limiting enzyme in the GSH synthesis pathway) activity, and increased nuclear Nrf2 staining. Pretreatment with buthionine sulfoximine (BSO, a GCL inhibitor) abolished the MB-mediated GSH increase, indicating that MB increases GSH synthesis by upregulating GCL, probably by the activation of the Nrf2/ARE pathway. BSO pretreatment, which did not modify cell viability per se, rendered cells more sensitive to MB-induced toxicity. In contrast, treatment with the antioxidant N-acetylcysteine protected cells from MB-induced toxicity. These findings show that the combined exposure of SH-SY5Y cells to PQ and MB induced a cytotoxic effect higher than that observed when cells were subjected to individual exposures. Such a higher effect seems to be related to additive toxic events resulting from PQ and MB exposures. Thus, our study contributes to a better understanding of the toxicity of PQ and MB in combined exposures.
{"title":"Mechanisms Mediating the Combined Toxicity of Paraquat and Maneb in SH-SY5Y Neuroblastoma Cells.","authors":"Suzana da Silva, Carolina de Lima da Costa, Aline Aita Naime, Danúbia Bonfanti Santos, Marcelo Farina, Dirleise Colle","doi":"10.1021/acs.chemrestox.3c00389","DOIUrl":"10.1021/acs.chemrestox.3c00389","url":null,"abstract":"<p><p>Epidemiological and experimental studies have demonstrated that combined exposure to the pesticides paraquat (PQ) and maneb (MB) increases the risk of developing Parkinson's disease. However, the mechanisms mediating the toxicity induced by combined exposure to these pesticides are not well understood. The aim of this study was to investigate the mechanism(s) of neurotoxicity induced by exposure to the pesticides PQ and MB isolated or in association (PQ + MB) in SH-SY5Y neuroblastoma cells. PQ + MB exposure for 24 and 48 h decreased cell viability and disrupted cell membrane integrity. In addition, PQ + MB exposure for 12 h decreased the mitochondrial membrane potential. PQ alone increased reactive oxygen species (ROS) and superoxide anion generation and decreased the activity of mitochondrial complexes I and II at 12 h of exposure. MB alone increased ROS generation and depleted intracellular glutathione (GSH) within 6 h of exposure. In contrast, MB exposure for 12 h increased the GSH levels, the glutamate cysteine ligase (GCL, the rate-limiting enzyme in the GSH synthesis pathway) activity, and increased nuclear Nrf2 staining. Pretreatment with buthionine sulfoximine (BSO, a GCL inhibitor) abolished the MB-mediated GSH increase, indicating that MB increases GSH synthesis by upregulating GCL, probably by the activation of the Nrf2/ARE pathway. BSO pretreatment, which did not modify cell viability per se, rendered cells more sensitive to MB-induced toxicity. In contrast, treatment with the antioxidant <i>N</i>-acetylcysteine protected cells from MB-induced toxicity. These findings show that the combined exposure of SH-SY5Y cells to PQ and MB induced a cytotoxic effect higher than that observed when cells were subjected to individual exposures. Such a higher effect seems to be related to additive toxic events resulting from PQ and MB exposures. Thus, our study contributes to a better understanding of the toxicity of PQ and MB in combined exposures.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":"1269-1282"},"PeriodicalIF":3.7,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11337211/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141755643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-19Epub Date: 2024-07-25DOI: 10.1021/acs.chemrestox.4c00085
Esther E Omaiye, Wentai Luo, Kevin J McWhirter, Prue Talbot
Our purpose was to test the hypothesis that ultrasonic cigarettes (u-cigarettes), which operate at relatively low temperatures, produce aerosols that are less harmful than heated-coil pod-style electronic cigarettes (e-cigarettes). The major chemicals in SURGE u-cigarette fluids and aerosols were quantified, their cytotoxicity and cellular effects were assessed, and a Margin of Exposure risk assessment was performed on chemicals in SURGE fluids. Four SURGE u-cigarette flavor variants ("Blueberry Ice," "Watermelon Ice," "Green Mint," and "Polar Mint") were evaluated. Flavor chemicals were quantified in fluids and aerosols using gas chromatography/mass spectrometry. Cytotoxicity and cell dynamics were assessed using the MTT assay, live-cell imaging, and fluorescence microscopy. WS-23 (a coolant) and total flavor chemical concentrations in SURGE were similar to e-cigarettes, while SURGE nicotine concentrations (13-19 mg/mL) were lower than many fourth generation e-cigarettes. Transfer efficiencies of dominant chemicals to aerosols in SURGE ranged from 44-100%. SURGE fluids and aerosols had four dominant flavor chemicals (>1 mg/mL). Toxic aldehydes were usually higher in SURGE aerosols than in SURGE fluids. SURGE fluids and aerosols had aldehyde concentrations significantly higher than pod-style e-cigarettes. Chemical constituents, solvent ratios, and aldehydes varied among SURGE flavor variants. SURGE fluids and aerosols inhibited cell growth and mitochondrial reductases, produced attenuated and round cells, and depolymerized actin filaments, effects that depended on pod flavor, chemical constituents, and concentration. The MOEs for nicotine, WS-23, and propylene glycol were <100 based on consumption of 1-2 SURGE u-cigarettes/day. Replacing the heating coil with a sonicator did not eliminate chemicals, including aldehydes, in aerosols or diminish toxicity in comparisons between SURGE and other e-cigarette pod products. The high concentrations of nicotine, WS-23, flavor chemicals, and aldehydes and the cytotoxicity of SURGE aerosols do not support the hypothesis that aerosols from u-cigarettes are less harmful than those from e-cigarettes.
{"title":"Ultrasonic Cigarettes: Chemicals and Cytotoxicity are Similar to Heated-Coil Pod-Style Electronic Cigarettes.","authors":"Esther E Omaiye, Wentai Luo, Kevin J McWhirter, Prue Talbot","doi":"10.1021/acs.chemrestox.4c00085","DOIUrl":"10.1021/acs.chemrestox.4c00085","url":null,"abstract":"<p><p>Our purpose was to test the hypothesis that ultrasonic cigarettes (u-cigarettes), which operate at relatively low temperatures, produce aerosols that are less harmful than heated-coil pod-style electronic cigarettes (e-cigarettes). The major chemicals in SURGE u-cigarette fluids and aerosols were quantified, their cytotoxicity and cellular effects were assessed, and a Margin of Exposure risk assessment was performed on chemicals in SURGE fluids. Four SURGE u-cigarette flavor variants (\"Blueberry Ice,\" \"Watermelon Ice,\" \"Green Mint,\" and \"Polar Mint\") were evaluated. Flavor chemicals were quantified in fluids and aerosols using gas chromatography/mass spectrometry. Cytotoxicity and cell dynamics were assessed using the MTT assay, live-cell imaging, and fluorescence microscopy. WS-23 (a coolant) and total flavor chemical concentrations in SURGE were similar to e-cigarettes, while SURGE nicotine concentrations (13-19 mg/mL) were lower than many fourth generation e-cigarettes. Transfer efficiencies of dominant chemicals to aerosols in SURGE ranged from 44-100%. SURGE fluids and aerosols had four dominant flavor chemicals (>1 mg/mL). Toxic aldehydes were usually higher in SURGE aerosols than in SURGE fluids. SURGE fluids and aerosols had aldehyde concentrations significantly higher than pod-style e-cigarettes. Chemical constituents, solvent ratios, and aldehydes varied among SURGE flavor variants. SURGE fluids and aerosols inhibited cell growth and mitochondrial reductases, produced attenuated and round cells, and depolymerized actin filaments, effects that depended on pod flavor, chemical constituents, and concentration. The MOEs for nicotine, WS-23, and propylene glycol were <100 based on consumption of 1-2 SURGE u-cigarettes/day. Replacing the heating coil with a sonicator did not eliminate chemicals, including aldehydes, in aerosols or diminish toxicity in comparisons between SURGE and other e-cigarette pod products. The high concentrations of nicotine, WS-23, flavor chemicals, and aldehydes and the cytotoxicity of SURGE aerosols do not support the hypothesis that aerosols from u-cigarettes are less harmful than those from e-cigarettes.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":"1329-1343"},"PeriodicalIF":3.7,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11337213/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141755644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-14DOI: 10.1021/acs.chemrestox.4c0006010.1021/acs.chemrestox.4c00060
Jui-Fang Kuo, Hsin-Ying Wu, Chun-Wei Tung, Wei-Hsiang Huang, Chen-Si Lin and Chia-Chi Wang*,
The susceptibility of the immune system to immunotoxic chemicals is evident, particularly in the thymus, a vital primary immune organ prone to atrophy due to exposure to toxicants. Fipronil (FPN), a widely used insecticide, is of concern due to its potential neurotoxicity, hepatotoxicity, and immunotoxicity. Our previous study showed that FPN disturbed the antigen-specific T-cell functionality in vivo. As T-cell lineage commitment and thymopoiesis are closely interconnected with the normal function of the T-cell-mediated immune responses, this study aims to further examine the toxic effects of FPN on thymocyte development. In this study, 4-week-old BALB/c mice received seven doses of FPN (1, 5, 10 mg/kg) by gavage. Thymus size, medulla/cortex ratio, total thymocyte counts, double-positive thymocyte population, and IL-7-positive cells decreased dose-dependently. IL-7 aids the differentiation of early T-cell precursors into mature T cells, and several essential genes contribute to the maturation of T cells in the thymus. Foxn1 ensures that the thymic microenvironment is suitable for the maturation of T-cell precursors. Lyl1 is involved in specifying lymphoid cells and maintaining T-cell development in the thymus. The c-Kit/SCF collaboration fosters a supportive thymic milieu to promote the formation of functional T cells. The expression of IL-7, IL-7R, c-Kit, SCF, Foxn1, and Lyl1 genes in the thymus was significantly diminished in FPN-treated groups with the concordance with the reduction of IL-7 signaling proteins (IL-7, IL-7R, c-KIT, SCF, LYL1, FOXO3A, and GABPA), suggesting that the dysregulation of T-cell lineage-related genes may contribute to the thymic atrophy induced by FPN. In addition, FPN disturbed the functionality of thymocytes with an increase of IL-4 and IFN-γ production and a decrease of IL-2 secretion after T-cell mitogen stimulation ex vivo. Collectively, FPN significantly deregulated genes related to T-cell progenitor differentiation, survival, and expansion, potentially leading to impaired thymopoiesis.
免疫系统对免疫毒性化学品的易感性是显而易见的,尤其是胸腺,因为胸腺是一个重要的初级免疫器官,容易因接触有毒物质而萎缩。氟虫腈(FPN)是一种广泛使用的杀虫剂,由于其潜在的神经毒性、肝毒性和免疫毒性而备受关注。我们之前的研究表明,氟虫腈会干扰体内抗原特异性 T 细胞的功能。由于T细胞系的承诺和胸腺的生成与T细胞介导的免疫反应的正常功能密切相关,本研究旨在进一步研究FPN对胸腺细胞发育的毒性影响。在这项研究中,4周大的BALB/c小鼠通过灌胃接受了7个剂量的FPN(1、5、10毫克/千克)。胸腺大小、髓质/皮质比率、胸腺细胞总数、双阳性胸腺细胞群和IL-7阳性细胞的减少与剂量有关。IL-7 可帮助早期 T 细胞前体分化为成熟的 T 细胞,有几个重要基因有助于胸腺中 T 细胞的成熟。Foxn1 确保胸腺微环境适合 T 细胞前体的成熟。Lyl1 参与淋巴细胞的分化,并维持胸腺中 T 细胞的发育。c-Kit/SCF合作营造了一个支持性胸腺环境,以促进功能性T细胞的形成。在 FPN 处理组中,胸腺中 IL-7、IL-7R、c-Kit、SCF、Foxn1 和 Lyl1 基因的表达明显减少,与 IL-7 信号蛋白(IL-7、IL-7R、c-KIT、SCF、LYL1、FOXO3A 和 GABPA)的减少一致,表明 T 细胞系相关基因的失调可能是 FPN 诱导胸腺萎缩的原因之一。此外,FPN干扰了胸腺细胞的功能,在体内T细胞有丝分裂原刺激后,IL-4和IFN-γ的产生增加,IL-2的分泌减少。总之,FPN会明显改变与T细胞祖细胞分化、存活和扩增有关的基因,从而可能导致胸腺造血功能受损。
{"title":"Induction of Thymus Atrophy and Disruption of Thymocyte Development by Fipronil through Dysregulation of IL-7-Associated Genes","authors":"Jui-Fang Kuo, Hsin-Ying Wu, Chun-Wei Tung, Wei-Hsiang Huang, Chen-Si Lin and Chia-Chi Wang*, ","doi":"10.1021/acs.chemrestox.4c0006010.1021/acs.chemrestox.4c00060","DOIUrl":"https://doi.org/10.1021/acs.chemrestox.4c00060https://doi.org/10.1021/acs.chemrestox.4c00060","url":null,"abstract":"<p >The susceptibility of the immune system to immunotoxic chemicals is evident, particularly in the thymus, a vital primary immune organ prone to atrophy due to exposure to toxicants. Fipronil (FPN), a widely used insecticide, is of concern due to its potential neurotoxicity, hepatotoxicity, and immunotoxicity. Our previous study showed that FPN disturbed the antigen-specific T-cell functionality <i>in vivo</i>. As T-cell lineage commitment and thymopoiesis are closely interconnected with the normal function of the T-cell-mediated immune responses, this study aims to further examine the toxic effects of FPN on thymocyte development. In this study, 4-week-old BALB/c mice received seven doses of FPN (1, 5, 10 mg/kg) by gavage. Thymus size, medulla/cortex ratio, total thymocyte counts, double-positive thymocyte population, and IL-7-positive cells decreased dose-dependently. IL-7 aids the differentiation of early T-cell precursors into mature T cells, and several essential genes contribute to the maturation of T cells in the thymus. <i>Foxn</i>1 ensures that the thymic microenvironment is suitable for the maturation of T-cell precursors. <i>Lyl</i>1 is involved in specifying lymphoid cells and maintaining T-cell development in the thymus. The <i>c-Kit/SCF</i> collaboration fosters a supportive thymic milieu to promote the formation of functional T cells. The expression of <i>IL-</i>7, <i>IL-</i>7<i>R</i>, <i>c-Kit</i>, <i>SCF</i>, <i>Foxn</i>1, and <i>Lyl</i>1 genes in the thymus was significantly diminished in FPN-treated groups with the concordance with the reduction of IL-7 signaling proteins (IL-7, IL-7R, c-KIT, SCF, LYL1, FOXO3A, and GABPA), suggesting that the dysregulation of T-cell lineage-related genes may contribute to the thymic atrophy induced by FPN. In addition, FPN disturbed the functionality of thymocytes with an increase of IL-4 and IFN-γ production and a decrease of IL-2 secretion after T-cell mitogen stimulation <i>ex vivo</i>. Collectively, FPN significantly deregulated genes related to T-cell progenitor differentiation, survival, and expansion, potentially leading to impaired thymopoiesis.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":"37 9","pages":"1488–1500 1488–1500"},"PeriodicalIF":3.7,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.chemrestox.4c00060","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142234593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}