首页 > 最新文献

Econometric Modeling: International Financial Markets - Volatility & Financial Crises eJournal最新文献

英文 中文
Regulation, Financial Crises, and Liberalization Traps 监管、金融危机和自由化陷阱
F. Marchionne, B. Pisicoli, M. Fratianni
To reconcile the mixed empirical results, we develop a theoretical model whose main implication is a concave impact of regulation on the probability of a crisis. We test this relationship by applying a Probit model of a non-linear specification to annual data from 1999 to 2011 drawn from 132 countries. The probability of a financial crisis fits an inverted U-shaped curve: it rises as regulation stringency moves from low to medium levels and falls from medium to high levels. Countries located at the intermediate level of regulatory stringency face more instability than countries that are either loosely or severely regulated. We identify the latter two groups as falling in “liberalization traps”. Institutional quality interacts significantly with the regulatory environment.
为了调和混合的实证结果,我们开发了一个理论模型,其主要含义是监管对危机概率的凹影响。我们通过对1999年至2011年来自132个国家的年度数据应用非线性规范的Probit模型来检验这种关系。发生金融危机的可能性符合倒u型曲线:随着监管从严程度从低到中、从中到高下降,发生金融危机的可能性会上升。监管严格程度处于中间水平的国家比监管宽松或严格的国家面临更大的不稳定性。我们认为后两类人落入了“自由化陷阱”。制度质量与监管环境有显著的相互作用。
{"title":"Regulation, Financial Crises, and Liberalization Traps","authors":"F. Marchionne, B. Pisicoli, M. Fratianni","doi":"10.2139/ssrn.3421151","DOIUrl":"https://doi.org/10.2139/ssrn.3421151","url":null,"abstract":"To reconcile the mixed empirical results, we develop a theoretical model whose main implication is a concave impact of regulation on the probability of a crisis. We test this relationship by applying a Probit model of a non-linear specification to annual data from 1999 to 2011 drawn from 132 countries. The probability of a financial crisis fits an inverted U-shaped curve: it rises as regulation stringency moves from low to medium levels and falls from medium to high levels. Countries located at the intermediate level of regulatory stringency face more instability than countries that are either loosely or severely regulated. We identify the latter two groups as falling in “liberalization traps”. Institutional quality interacts significantly with the regulatory environment.","PeriodicalId":321181,"journal":{"name":"Econometric Modeling: International Financial Markets - Volatility & Financial Crises eJournal","volume":"54 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127123080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Understanding Jumps in High Frequency Digital Asset Markets 理解高频数字资产市场的跳跃
Danial Saef, Odett Nagy, Sergej Sizov, W. Härdle
While attention is a predictor for digital asset prices, and jumps in Bitcoin prices are well-known, we know little about its alternatives. Studying high frequency crypto data gives us the unique possibility to confirm that cross market digital asset returns are driven by high frequency jumps clustered around black swan events, resembling volatility and trading volume seasonalities. Regressions show that intra-day jumps significantly influence end of day returns in size and direction. This provides fundamental research for crypto option pricing models. However, we need better econometric methods for capturing the specific market microstructure of cryptos. All calculations are reproducible via the quantlet.com technology.
虽然关注度是数字资产价格的一个预测指标,比特币价格的飙升也是众所周知的,但我们对它的替代品知之甚少。研究高频加密数据为我们提供了一种独特的可能性,可以确认跨市场数字资产回报是由围绕黑天鹅事件聚集的高频跳跃驱动的,类似于波动性和交易量季节性。回归显示日内跳跃在规模和方向上显著影响日结束时的回报。这为加密期权定价模型提供了基础研究。然而,我们需要更好的计量经济学方法来捕捉加密货币的特定市场微观结构。所有的计算都可以通过quantlet.com技术重现。
{"title":"Understanding Jumps in High Frequency Digital Asset Markets","authors":"Danial Saef, Odett Nagy, Sergej Sizov, W. Härdle","doi":"10.2139/ssrn.3944865","DOIUrl":"https://doi.org/10.2139/ssrn.3944865","url":null,"abstract":"While attention is a predictor for digital asset prices, and jumps in Bitcoin prices are well-known, we know little about its alternatives. Studying high frequency crypto data gives us the unique possibility to confirm that cross market digital asset returns are driven by high frequency jumps clustered around black swan events, resembling volatility and trading volume seasonalities. Regressions show that intra-day jumps significantly influence end of day returns in size and direction. This provides fundamental research for crypto option pricing models. However, we need better econometric methods for capturing the specific market microstructure of cryptos. All calculations are reproducible via the quantlet.com technology.","PeriodicalId":321181,"journal":{"name":"Econometric Modeling: International Financial Markets - Volatility & Financial Crises eJournal","volume":"27 2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116393940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Liquidity Shocks and the Negative Premium of Liquidity Volatility Around the World 全球流动性冲击与流动性波动的负溢价
Frank Y. Feng, W. Kang, Huiping Zhang
We find that liquidity volatility negatively predicts stock returns in global markets. This relationship holds for different liquidity measures and cannot be explained by the idiosyncratic volatility effect. This puzzle can be explained by the asymmetric impact of liquidity increase and decrease on expected returns. Since the price decline following liquidity decrease outweighs the price appreciation after liquidity increase, high-liquidity-volatility stocks, which are more likely to experience large liquidity changes in either direction, tend to have negative returns on average. We find that including liquidity decrease explains the negative premium of liquidity volatility, while including liquidity increase does not.
我们发现流动性波动对全球市场股票收益有负向预测。这种关系适用于不同的流动性指标,不能用特殊波动效应来解释。这个难题可以用流动性增加和减少对预期收益的不对称影响来解释。由于流动性减少后的价格下跌大于流动性增加后的价格上涨,高流动性波动率的股票更有可能经历较大的流动性变化,因此平均收益往往为负。我们发现,包含流动性减少可以解释流动性波动的负溢价,而包含流动性增加不能解释流动性波动的负溢价。
{"title":"Liquidity Shocks and the Negative Premium of Liquidity Volatility Around the World","authors":"Frank Y. Feng, W. Kang, Huiping Zhang","doi":"10.2139/ssrn.3930591","DOIUrl":"https://doi.org/10.2139/ssrn.3930591","url":null,"abstract":"We find that liquidity volatility negatively predicts stock returns in global markets. This relationship holds for different liquidity measures and cannot be explained by the idiosyncratic volatility effect. This puzzle can be explained by the asymmetric impact of liquidity increase and decrease on expected returns. Since the price decline following liquidity decrease outweighs the price appreciation after liquidity increase, high-liquidity-volatility stocks, which are more likely to experience large liquidity changes in either direction, tend to have negative returns on average. We find that including liquidity decrease explains the negative premium of liquidity volatility, while including liquidity increase does not.","PeriodicalId":321181,"journal":{"name":"Econometric Modeling: International Financial Markets - Volatility & Financial Crises eJournal","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130843197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mixed Semimartingales: Volatility Estimation in the Presence of Rough Noise 混合半鞅:粗糙噪声存在下的波动估计
Carsten Chong, T. Delerue, Guoying Li
We consider the problem of estimating volatility based on high-frequency data when the observed price process is a continuous Itô semimartingale contaminated by microstructure noise. Assuming that the noise process is compatible across different sampling frequencies, we argue that it typically has a similar local behavior to fractional Brownian motion. For the resulting class of processes, which we call mixed semimartingales, we derive consistent estimators and asymptotic confidence intervals for the roughness parameter of the noise and the integrated price and noise volatilities, in all cases where these quantities are identifiable. Our model can explain key features of recent stock price data, most notably divergence rates in volatility signature plots that vary considerably over time and between assets.
我们考虑了在观察到的价格过程是一个受微观结构噪声污染的连续Itô半鞅时,基于高频数据估计波动率的问题。假设噪声过程在不同的采样频率上是兼容的,我们认为它通常具有与分数布朗运动相似的局部行为。对于由此产生的一类过程,我们称之为混合半鞅,我们推导出噪声的粗糙度参数和综合价格和噪声波动的一致估计量和渐近置信区间,在所有这些量是可识别的情况下。我们的模型可以解释近期股价数据的关键特征,最显著的是随时间和资产之间差异很大的波动性特征图的背离率。
{"title":"Mixed Semimartingales: Volatility Estimation in the Presence of Rough Noise","authors":"Carsten Chong, T. Delerue, Guoying Li","doi":"10.2139/ssrn.3878809","DOIUrl":"https://doi.org/10.2139/ssrn.3878809","url":null,"abstract":"We consider the problem of estimating volatility based on high-frequency data when the observed price process is a continuous Itô semimartingale contaminated by microstructure noise. Assuming that the noise process is compatible across different sampling frequencies, we argue that it typically has a similar local behavior to fractional Brownian motion. For the resulting class of processes, which we call mixed semimartingales, we derive consistent estimators and asymptotic confidence intervals for the roughness parameter of the noise and the integrated price and noise volatilities, in all cases where these quantities are identifiable. Our model can explain key features of recent stock price data, most notably divergence rates in volatility signature plots that vary considerably over time and between assets.","PeriodicalId":321181,"journal":{"name":"Econometric Modeling: International Financial Markets - Volatility & Financial Crises eJournal","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123749031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Handbook of Real Estate and Macroeconomics: An Introduction 房地产与宏观经济学手册:导论
Institute of Social and Economic Research, C. Leung
This paper provides some background for the book, Handbook of Real Estate and Macroeconomics. It gives an overview of different chapters and how various themes and ideas can be connected. Directions for future research are also discussed.
本文介绍了《房地产与宏观经济学手册》一书的写作背景。它给出了不同章节的概述,以及各种主题和思想如何联系起来。并对今后的研究方向进行了展望。
{"title":"Handbook of Real Estate and Macroeconomics: An Introduction","authors":"Institute of Social and Economic Research, C. Leung","doi":"10.2139/ssrn.3902313","DOIUrl":"https://doi.org/10.2139/ssrn.3902313","url":null,"abstract":"This paper provides some background for the book, Handbook of Real Estate and Macroeconomics. It gives an overview of different chapters and how various themes and ideas can be connected. Directions for future research are also discussed.","PeriodicalId":321181,"journal":{"name":"Econometric Modeling: International Financial Markets - Volatility & Financial Crises eJournal","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130270080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GMM DCKE - Semi-Analytic Conditional Expectations 半解析条件期望
Joerg Kienitz
We introduce a data driven and model free approach for computing conditional expectations. The new method combines Gaussian Mean Mixture models with classic analytic techniques based on the properties of the Gaussian distribution. We also incorporate a proxy hedge that leads to analytic expressions for the hedge with respect to the chosen proxy. This essentially makes use of the representation of the hedge sensitivity measuring the part of the variance that is attributed to the proxy. If we take the underlying, this corresponds to a time discrete minimal variance delta hedge. We apply our method to the calibration of pricing and hedging of (multi-dimensional) exotic Bermudan options, the calibration of stochastic local volatility models and applications to xVA/exposure calculation. For illustration we have chosen the rough Bergomi model and high-dimensional Heston models. Finally, we discuss issues when increasing the dimensionality and propose solutions using established statistical learning methods.
我们引入了一种数据驱动和无模型的方法来计算条件期望。该方法基于高斯分布的特性,将高斯均值混合模型与经典解析技术相结合。我们还纳入了代理对冲,导致对冲相对于所选代理的解析表达式。这基本上是利用套期保值敏感性的表示来衡量归因于代理的方差部分。如果我们考虑底层,这对应于时间离散最小方差delta对冲。我们将我们的方法应用于(多维)异国百慕大期权的定价和套期保值校准,随机本地波动率模型的校准以及xVA/敞口计算的应用。为了说明,我们选择了粗糙的Bergomi模型和高维的Heston模型。最后,我们讨论了增加维数时的问题,并提出了使用已建立的统计学习方法的解决方案。
{"title":"GMM DCKE - Semi-Analytic Conditional Expectations","authors":"Joerg Kienitz","doi":"10.2139/ssrn.3902490","DOIUrl":"https://doi.org/10.2139/ssrn.3902490","url":null,"abstract":"We introduce a data driven and model free approach for computing conditional expectations. The new method combines Gaussian Mean Mixture models with classic analytic techniques based on the properties of the Gaussian distribution. We also incorporate a proxy hedge that leads to analytic expressions for the hedge with respect to the chosen proxy. This essentially makes use of the representation of the hedge sensitivity measuring the part of the variance that is attributed to the proxy. If we take the underlying, this corresponds to a time discrete minimal variance delta hedge. We apply our method to the calibration of pricing and hedging of (multi-dimensional) exotic Bermudan options, the calibration of stochastic local volatility models and applications to xVA/exposure calculation. For illustration we have chosen the rough Bergomi model and high-dimensional Heston models. Finally, we discuss issues when increasing the dimensionality and propose solutions using established statistical learning methods.","PeriodicalId":321181,"journal":{"name":"Econometric Modeling: International Financial Markets - Volatility & Financial Crises eJournal","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124683234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Forecasting leveraged loan market volatility using GARCH models 利用GARCH模型预测杠杆贷款市场波动
Andreas Keßler
This paper compares different GARCH models in terms of their out-of-sample predictive ability of leveraged loan market volatility. The study investigates whether the asymmetric effects of good and bad news on volatility is present and how distributional assumptions affect the selection of GARCH models. Compared to two widely used historical volatility models, the simple moving average and the exponentially weighted moving average, the results suggest that asymmetric GARCH models have marginally better out-of-sample predictive ability. In addition, this study finds that fixed income market volatilities improve the forecasts of loan market volatility. The model comparison involves a regression-based approach, loss functions and statistical tests.
本文比较了不同GARCH模型对杠杆贷款市场波动的样本外预测能力。本研究探讨了好消息和坏消息对波动率的不对称效应是否存在,以及分布假设如何影响GARCH模型的选择。与两种广泛使用的历史波动率模型(简单移动平均和指数加权移动平均)相比,结果表明,非对称GARCH模型具有更好的样本外预测能力。此外,本研究发现,固定收益市场波动改善了对贷款市场波动的预测。模型比较包括基于回归的方法、损失函数和统计检验。
{"title":"Forecasting leveraged loan market volatility using GARCH models","authors":"Andreas Keßler","doi":"10.2139/ssrn.3874947","DOIUrl":"https://doi.org/10.2139/ssrn.3874947","url":null,"abstract":"This paper compares different GARCH models in terms of their out-of-sample predictive ability of leveraged loan market volatility. The study investigates whether the asymmetric effects of good and bad news on volatility is present and how distributional assumptions affect the selection of GARCH models. Compared to two widely used historical volatility models, the simple moving average and the exponentially weighted moving average, the results suggest that asymmetric GARCH models have marginally better out-of-sample predictive ability. In addition, this study finds that fixed income market volatilities improve the forecasts of loan market volatility. The model comparison involves a regression-based approach, loss functions and statistical tests.","PeriodicalId":321181,"journal":{"name":"Econometric Modeling: International Financial Markets - Volatility & Financial Crises eJournal","volume":"214 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124215630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Realized Semi(Co)Variation: Signs that All Volatilities are Not Created Equal 已实现的半(Co)变化:表明所有波动都不是均等的
T. Bollerslev
I provide a selective review of recent developments in financial econometrics related to measuring, modeling, forecasting and pricing “good” and “bad” volatilities based on realized variation type measures constructed from high-frequency intraday data. An especially appealing feature of the different measures concerns the ease with which they may be calculated empirically, merely involving cross-products of signed, or thresholded, high-frequency returns. I begin by considering univariate semivariation measures, followed by multivariate semicovariation and semibeta measures, before briefly discussing even richer partial (co)variation measures. I focus my discussion on practical uses of the measures emphasizing what I consider to be the most noteworthy empirical findings to date pertaining to volatility forecasting and asset pricing
我有选择性地回顾了金融计量经济学的最新发展,这些发展涉及基于高频日内数据构建的实现变异类型度量来测量、建模、预测和定价“好”和“坏”波动性。不同度量方法的一个特别吸引人的特点是,它们可以很容易地进行经验计算,仅仅涉及有符号的或阈值的高频回报的交叉乘积。我首先考虑单变量半变异度量,然后是多变量半变异和半beta度量,然后简要讨论更丰富的部分(co)变异度量。我将讨论重点放在这些指标的实际应用上,强调我认为迄今为止与波动性预测和资产定价有关的最值得注意的实证发现
{"title":"Realized Semi(Co)Variation: Signs that All Volatilities are Not Created Equal","authors":"T. Bollerslev","doi":"10.2139/ssrn.3872858","DOIUrl":"https://doi.org/10.2139/ssrn.3872858","url":null,"abstract":"I provide a selective review of recent developments in financial econometrics related to measuring, modeling, forecasting and pricing “good” and “bad” volatilities based on realized variation type measures constructed from high-frequency intraday data. An especially appealing feature of the different measures concerns the ease with which they may be calculated empirically, merely involving cross-products of signed, or thresholded, high-frequency returns. I begin by considering univariate semivariation measures, followed by multivariate semicovariation and semibeta measures, before briefly discussing even richer partial (co)variation measures. I focus my discussion on practical uses of the measures emphasizing what I consider to be the most noteworthy empirical findings to date pertaining to volatility forecasting and asset pricing","PeriodicalId":321181,"journal":{"name":"Econometric Modeling: International Financial Markets - Volatility & Financial Crises eJournal","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116528127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
El ‘modelo Al Janabi’, la herramienta que podría evitar las crisis “Al Janabi模型”,可以避免危机的工具
Mazin A. M. Al Janabi
La crisis en 2008 escaló al resto del mundo y la falta de liquidez se esparció como pólvora. Algunos bancos centrales tuvieron que intervenir en los mercados monetarios y en instituciones financieras para rescatarlas: se generó un efecto dominó que provocó una crisis alimentaria mundial y un aumento de la pobreza. Además, “el cambio en las condiciones del mercado reveló la rapidez con que la liquidez puede agotarse y puso de manifiesto que la falta de liquidez puede prolongarse durante bastante tiempo”, señala un documento del Banco de Pagos Internacionales (BPI, por sus siglas en inglés), conocido como el banco de los bancos centrales. Este episodio confirmó la importancia de la liquidez en el funcionamiento de los mercados financieros y el sector bancario. Fue así como el comité de Basilea III (iniciativas para fortalecer el sistema financiero mundial tras la crisis de 2008 y 2009) acordó medidas para estar prevenidos ante otra recesión. Entre ellas, a partir de 2019, las instituciones financieras deben cumplir con agregar el factor de riesgo de liquidez en la medición del riesgo de mercado.
2008年的危机席卷了世界其他地区,流动性短缺像野火一样蔓延开来。一些中央银行不得不干预货币市场和金融机构,以拯救它们:多米诺骨牌效应产生,导致全球粮食危机和贫困加剧。还透露,“在市场条件变化的速度能劳动流动性明显缺乏流动性将延续很长时间,”国际清算银行的一份文件说(清算),称为中央银行的银行。这一事件证实了流动性在金融市场和银行业运作中的重要性。因此,巴塞尔协议III委员会(2008年和2009年危机后加强全球金融体系的倡议)同意采取措施,防范另一场衰退。其中,从2019年开始,金融机构必须在衡量市场风险时加入流动性风险因素。
{"title":"El ‘modelo Al Janabi’, la herramienta que podría evitar las crisis","authors":"Mazin A. M. Al Janabi","doi":"10.2139/ssrn.3838031","DOIUrl":"https://doi.org/10.2139/ssrn.3838031","url":null,"abstract":"La crisis en 2008 escaló al resto del mundo y la falta de liquidez se esparció como pólvora. Algunos bancos centrales tuvieron que intervenir en los mercados monetarios y en instituciones financieras para rescatarlas: se generó un efecto dominó que provocó una crisis alimentaria mundial y un aumento de la pobreza. Además, “el cambio en las condiciones del mercado reveló la rapidez con que la liquidez puede agotarse y puso de manifiesto que la falta de liquidez puede prolongarse durante bastante tiempo”, señala un documento del Banco de Pagos Internacionales (BPI, por sus siglas en inglés), conocido como el banco de los bancos centrales. Este episodio confirmó la importancia de la liquidez en el funcionamiento de los mercados financieros y el sector bancario. Fue así como el comité de Basilea III (iniciativas para fortalecer el sistema financiero mundial tras la crisis de 2008 y 2009) acordó medidas para estar prevenidos ante otra recesión. Entre ellas, a partir de 2019, las instituciones financieras deben cumplir con agregar el factor de riesgo de liquidez en la medición del riesgo de mercado.","PeriodicalId":321181,"journal":{"name":"Econometric Modeling: International Financial Markets - Volatility & Financial Crises eJournal","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122221626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive Learning for Financial Markets Mixing Model-Based and Model-Free RL for Volatility Targeting 基于模型和无模型强化学习的金融市场自适应学习
E. Benhamou, D. Saltiel, S. Tabachnik, Sui Kai Wong, François Chareyron
Model-Free Reinforcement Learning has achieved meaningful results in stable environments but, to this day, it remains problematic in regime changing environments like financial markets. In contrast, model-based RL is able to capture some fundamental and dynamical concepts of the environment but suffer from cognitive bias. In this work, we propose to combine the best of the two techniques by selecting various model-based approaches thanks to Model-Free Deep Reinforcement Learning. Using not only past performance and volatility, we include additional contextual information such as macro and risk appetite signals to account for implicit regime changes. We also adapt traditional RL methods to real-life situations by considering only past data for the training sets. Hence, we cannot use future information in our training data set as implied by K-fold cross validation. Building on traditional statistical methods, we use the traditional "walk-forward analysis", which is defined by successive training and testing based on expanding periods, to assert the robustness of the resulting agent.

Finally, we present the concept of statistical difference's significance based on a two-tailed T-test, to highlight the ways in which our models differ from more traditional ones. Our experimental results show that our approach outperforms traditional financial baseline portfolio models such as the Markowitz model in almost all evaluation metrics commonly used in financial mathematics, namely net performance, Sharpe and Sortino ratios, maximum drawdown, maximum drawdown over volatility.
无模型强化学习在稳定的环境中取得了有意义的结果,但直到今天,它在金融市场等制度变化的环境中仍然存在问题。相比之下,基于模型的强化学习能够捕捉环境的一些基本和动态概念,但会受到认知偏差的影响。在这项工作中,我们建议通过选择各种基于模型的方法来结合两种技术的优点,这要归功于无模型深度强化学习。我们不仅使用过去的表现和波动性,还包括额外的上下文信息,如宏观和风险偏好信号,以解释隐含的制度变化。我们还通过只考虑训练集的过去数据来适应传统的RL方法。因此,我们不能在我们的训练数据集中使用K-fold交叉验证所暗示的未来信息。在传统统计方法的基础上,我们使用传统的“向前走分析”,这是由基于扩展周期的连续训练和测试来定义的,以断言结果代理的鲁棒性。最后,我们提出了基于双尾t检验的统计差异显著性的概念,以突出我们的模型与传统模型的不同之处。我们的实验结果表明,我们的方法在几乎所有金融数学中常用的评估指标上都优于传统的金融基线投资组合模型,如马科维茨模型,即净业绩、夏普和索蒂诺比率、最大回撤率、最大回撤率高于波动性。
{"title":"Adaptive Learning for Financial Markets Mixing Model-Based and Model-Free RL for Volatility Targeting","authors":"E. Benhamou, D. Saltiel, S. Tabachnik, Sui Kai Wong, François Chareyron","doi":"10.2139/ssrn.3830012","DOIUrl":"https://doi.org/10.2139/ssrn.3830012","url":null,"abstract":"Model-Free Reinforcement Learning has achieved meaningful results in stable environments but, to this day, it remains problematic in regime changing environments like financial markets. In contrast, model-based RL is able to capture some fundamental and dynamical concepts of the environment but suffer from cognitive bias. In this work, we propose to combine the best of the two techniques by selecting various model-based approaches thanks to Model-Free Deep Reinforcement Learning. Using not only past performance and volatility, we include additional contextual information such as macro and risk appetite signals to account for implicit regime changes. We also adapt traditional RL methods to real-life situations by considering only past data for the training sets. Hence, we cannot use future information in our training data set as implied by K-fold cross validation. Building on traditional statistical methods, we use the traditional \"walk-forward analysis\", which is defined by successive training and testing based on expanding periods, to assert the robustness of the resulting agent. <br><br>Finally, we present the concept of statistical difference's significance based on a two-tailed T-test, to highlight the ways in which our models differ from more traditional ones. Our experimental results show that our approach outperforms traditional financial baseline portfolio models such as the Markowitz model in almost all evaluation metrics commonly used in financial mathematics, namely net performance, Sharpe and Sortino ratios, maximum drawdown, maximum drawdown over volatility.","PeriodicalId":321181,"journal":{"name":"Econometric Modeling: International Financial Markets - Volatility & Financial Crises eJournal","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114210963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
期刊
Econometric Modeling: International Financial Markets - Volatility & Financial Crises eJournal
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1