Pub Date : 2022-01-07DOI: 10.5772/intechopen.101613
Madhuri Girdhar, Zeba Tabassum, K. Singh, Aarthi R. Mohan
Heavy metals accumulated the earth crust and causes extreme pollution. Accumulation of rich concentrations of heavy metals in environments can cause various human diseases which risks health and high ecological issues. Mercury, arsenic, lead, silver, cadmium, chromium, etc. are some heavy metals harmful to organisms at even very low concentration. Heavy metal pollution is increasing day by day due to industrialization, urbanization, mining, volcanic eruptions, weathering of rocks, etc. Different microbial strains have developed very efficient and unique mechanisms for tolerating heavy metals in polluted sites with eco-friendly techniques. Heavy metals are group of metals with density more than 5 g/cm3. Microorganisms are generally present in contaminated sites of heavy metals and they develop new strategies which are metabolism dependent or independent to tackle with the adverse effects of heavy metals. Bacteria, Algae, Fungi, Cyanobacteria uses in bioremediation technique and acts a biosorbent. Removal of heavy metal from contaminated sites using microbial strains is cheaper alternative. Mostly species involved in bioremediation include Enterobacter and Pseudomonas species and some of bacillus species too in bacteria. Aspergillus and Penicillin species used in heavy metal resistance in fungi. Various species of the brown algae and Cyanobacteria shows resistance in algae.
{"title":"A Review on the Resistance and Accumulation of Heavy Metals by Different Microbial Strains","authors":"Madhuri Girdhar, Zeba Tabassum, K. Singh, Aarthi R. Mohan","doi":"10.5772/intechopen.101613","DOIUrl":"https://doi.org/10.5772/intechopen.101613","url":null,"abstract":"Heavy metals accumulated the earth crust and causes extreme pollution. Accumulation of rich concentrations of heavy metals in environments can cause various human diseases which risks health and high ecological issues. Mercury, arsenic, lead, silver, cadmium, chromium, etc. are some heavy metals harmful to organisms at even very low concentration. Heavy metal pollution is increasing day by day due to industrialization, urbanization, mining, volcanic eruptions, weathering of rocks, etc. Different microbial strains have developed very efficient and unique mechanisms for tolerating heavy metals in polluted sites with eco-friendly techniques. Heavy metals are group of metals with density more than 5 g/cm3. Microorganisms are generally present in contaminated sites of heavy metals and they develop new strategies which are metabolism dependent or independent to tackle with the adverse effects of heavy metals. Bacteria, Algae, Fungi, Cyanobacteria uses in bioremediation technique and acts a biosorbent. Removal of heavy metal from contaminated sites using microbial strains is cheaper alternative. Mostly species involved in bioremediation include Enterobacter and Pseudomonas species and some of bacillus species too in bacteria. Aspergillus and Penicillin species used in heavy metal resistance in fungi. Various species of the brown algae and Cyanobacteria shows resistance in algae.","PeriodicalId":339227,"journal":{"name":"Biodegradation [Working Title]","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128456332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-15DOI: 10.5772/intechopen.101374
A. Perdigão, José Luís da Silva Pereira
In the last decades increased global environmental concerns to water and soils pollution. The main concerns are related to the contamination of the ecosystem, food security, and human health since many of the contaminants present in soil and water (residues of pesticides and antibiotics, genes of resistance to antibiotics, and heavy metals) are absorbed by plants and enter the food chain. Remediation of the contaminated water and soil to ensure sustainable water supply and food production is urgently needed. The use of biochar can have a positive effect on this remediation process. There are several studies that demonstrate the biochar’s ability to block/reduce the contaminating effect of pesticides, antibiotic residues, antibiotic resistance genes, and heavy metals. The objective of this chapter is to carry out a comprehensive review of the effect of using biochar on the availability/transmission of these contaminants to the soil and food supply chain.
{"title":"Effects of Biochar in Soil and Water Remediation: A Review","authors":"A. Perdigão, José Luís da Silva Pereira","doi":"10.5772/intechopen.101374","DOIUrl":"https://doi.org/10.5772/intechopen.101374","url":null,"abstract":"In the last decades increased global environmental concerns to water and soils pollution. The main concerns are related to the contamination of the ecosystem, food security, and human health since many of the contaminants present in soil and water (residues of pesticides and antibiotics, genes of resistance to antibiotics, and heavy metals) are absorbed by plants and enter the food chain. Remediation of the contaminated water and soil to ensure sustainable water supply and food production is urgently needed. The use of biochar can have a positive effect on this remediation process. There are several studies that demonstrate the biochar’s ability to block/reduce the contaminating effect of pesticides, antibiotic residues, antibiotic resistance genes, and heavy metals. The objective of this chapter is to carry out a comprehensive review of the effect of using biochar on the availability/transmission of these contaminants to the soil and food supply chain.","PeriodicalId":339227,"journal":{"name":"Biodegradation [Working Title]","volume":"158 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115711463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-22DOI: 10.5772/intechopen.100517
A. Bouziani, Mohamed Yahya
Mass spectrometers can provide information about molecular composition and chemical structure. However, with complex mixtures, superpositions and even suppression of signals may occur. On the other hand, Chromatography is an ideal technique for separating complexes but is often insufficient for compound identification. Hence, coupling both techniques in order to eliminate the limitations of each technique makes perfect sense. In this contribution, a brief description of mass spectrometry coupled with chromatography in the gas and liquid phase will be discussed to explain the advantages of coupling the two methods. The ionization techniques are also reported and followed by application areas of these techniques. Finally, the recording and treatment of the results are reviewed.
{"title":"Mass Spectrometry Coupled with Chromatography toward Separation and Identification of Organic Mixtures","authors":"A. Bouziani, Mohamed Yahya","doi":"10.5772/intechopen.100517","DOIUrl":"https://doi.org/10.5772/intechopen.100517","url":null,"abstract":"Mass spectrometers can provide information about molecular composition and chemical structure. However, with complex mixtures, superpositions and even suppression of signals may occur. On the other hand, Chromatography is an ideal technique for separating complexes but is often insufficient for compound identification. Hence, coupling both techniques in order to eliminate the limitations of each technique makes perfect sense. In this contribution, a brief description of mass spectrometry coupled with chromatography in the gas and liquid phase will be discussed to explain the advantages of coupling the two methods. The ionization techniques are also reported and followed by application areas of these techniques. Finally, the recording and treatment of the results are reviewed.","PeriodicalId":339227,"journal":{"name":"Biodegradation [Working Title]","volume":"298 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130045279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-11DOI: 10.5772/intechopen.100480
Pedro Eulogio Cisterna Osorio, Barbara Faundez-Miño
Fats and oils present in wastewater are usually eliminated by physical and biological processes. In this experience, the fatty wastewaters are treated biologically, and it assesses the impact of the mix in the fats and oils biodegradation and carried out the experiments in a laboratory scale unit. The biodegradation of fats and oils was analysed in two sceneries, with mix previous by mechanical agitation and without mix. Key parameters were monitored, such as the concentration of fats and oils in the influents and effluents, mass loading, and the efficiency of biodegradation. The mass loading range was similar in both sceneries. In the experimental activated sludge plant without mix, the biodegradation of fats and oils reached levels in the range of 28 to 42.5%. For the wastewater treatment plant with a previous mix by mechanical agitation, the levels of biodegradation of fats and oils ranged from 64 to 75%. Therefore, considering the efficiency of the biodegradation of fats and oils in both sceneries, the results indicated that the level mix is a high incidence.
{"title":"Differential Impact of the Prior Mix by Stirring in the Biodegradation of Sunflower Oil","authors":"Pedro Eulogio Cisterna Osorio, Barbara Faundez-Miño","doi":"10.5772/intechopen.100480","DOIUrl":"https://doi.org/10.5772/intechopen.100480","url":null,"abstract":"Fats and oils present in wastewater are usually eliminated by physical and biological processes. In this experience, the fatty wastewaters are treated biologically, and it assesses the impact of the mix in the fats and oils biodegradation and carried out the experiments in a laboratory scale unit. The biodegradation of fats and oils was analysed in two sceneries, with mix previous by mechanical agitation and without mix. Key parameters were monitored, such as the concentration of fats and oils in the influents and effluents, mass loading, and the efficiency of biodegradation. The mass loading range was similar in both sceneries. In the experimental activated sludge plant without mix, the biodegradation of fats and oils reached levels in the range of 28 to 42.5%. For the wastewater treatment plant with a previous mix by mechanical agitation, the levels of biodegradation of fats and oils ranged from 64 to 75%. Therefore, considering the efficiency of the biodegradation of fats and oils in both sceneries, the results indicated that the level mix is a high incidence.","PeriodicalId":339227,"journal":{"name":"Biodegradation [Working Title]","volume":"298 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128617107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-14DOI: 10.5772/intechopen.99028
A. Verma
Environmental pollution has been on the rise in the past few decades owing to increased human activities on energy reservoirs, unsafe agricultural practices and rapid industrialization. Soil pollution is one of the major worry among all because soil contamination can harm the humans by consumption of food grown in polluted soil or it can cause infertility to soil and lower the productivity, Among the pollutants that are of environmental and public health concerns due to their toxicities are: heavy metals, nuclear wastes, pesticides, greenhouse gases, and hydrocarbons. So this chapter will include; Sources of soil pollution and remediation of polluted sites using biological means has proven effective and reliable due to its eco-friendly features. Bio-remediation can either be carried out ex situ or in situ, depending on several factors, which include site characteristics, type and concentration of pollutants. It also seen as a solution for emerging contaminant problems.
{"title":"Bioremediation Techniques for Soil Pollution: An Introduction","authors":"A. Verma","doi":"10.5772/intechopen.99028","DOIUrl":"https://doi.org/10.5772/intechopen.99028","url":null,"abstract":"Environmental pollution has been on the rise in the past few decades owing to increased human activities on energy reservoirs, unsafe agricultural practices and rapid industrialization. Soil pollution is one of the major worry among all because soil contamination can harm the humans by consumption of food grown in polluted soil or it can cause infertility to soil and lower the productivity, Among the pollutants that are of environmental and public health concerns due to their toxicities are: heavy metals, nuclear wastes, pesticides, greenhouse gases, and hydrocarbons. So this chapter will include; Sources of soil pollution and remediation of polluted sites using biological means has proven effective and reliable due to its eco-friendly features. Bio-remediation can either be carried out ex situ or in situ, depending on several factors, which include site characteristics, type and concentration of pollutants. It also seen as a solution for emerging contaminant problems.","PeriodicalId":339227,"journal":{"name":"Biodegradation [Working Title]","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117089134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-14DOI: 10.5772/intechopen.99077
Ju-Chen Chia
Phytochelatin synthase (PCS) is well-known for its role in heavy metal detoxification in plants, yeasts and non-vertebrate animals. It is a protease-like enzyme that catalyzes glutathione (GSH) to form phytochelatins (PCs), a group of Cys-rich and non-translational polypeptides with a high affinity to heavy metals. In addition, PCS also functions in xenobiotic metabolism by processing GS-conjugates in the cytosol. Because PCS is involved in GSH metabolism and the degradation of GS-conjugates, it is one of the important components in GSH homeostasis and GSH-mediated biodegradation. This chapter reviews the biochemical mechanism of PCS, how the enzyme activity is regulated, and its roles in heavy metal detoxification as well as GS-S-conjugate metabolism. This chapter also highlights the potential applications of PCS in the improvement of plant performance under combined stresses.
{"title":"Phytochelatin Synthase in Heavy Metal Detoxification and Xenobiotic Metabolism","authors":"Ju-Chen Chia","doi":"10.5772/intechopen.99077","DOIUrl":"https://doi.org/10.5772/intechopen.99077","url":null,"abstract":"Phytochelatin synthase (PCS) is well-known for its role in heavy metal detoxification in plants, yeasts and non-vertebrate animals. It is a protease-like enzyme that catalyzes glutathione (GSH) to form phytochelatins (PCs), a group of Cys-rich and non-translational polypeptides with a high affinity to heavy metals. In addition, PCS also functions in xenobiotic metabolism by processing GS-conjugates in the cytosol. Because PCS is involved in GSH metabolism and the degradation of GS-conjugates, it is one of the important components in GSH homeostasis and GSH-mediated biodegradation. This chapter reviews the biochemical mechanism of PCS, how the enzyme activity is regulated, and its roles in heavy metal detoxification as well as GS-S-conjugate metabolism. This chapter also highlights the potential applications of PCS in the improvement of plant performance under combined stresses.","PeriodicalId":339227,"journal":{"name":"Biodegradation [Working Title]","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123940637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-13DOI: 10.5772/intechopen.99835
M. Begum, B. Sarmah, G. G. Kandali, S. Kalita, Ipsita Ojha, Raktim Bhagawati, Lipika Talukdar
Persistent organic pollutants (POPs) of soil mainly exhibit toxic characteristics that posses hazard to whole mankind. These toxic pollutants includes several group of compound viz., polychlorinated biphenyls, polybrominated biphenyls, polychlorinated dibenzofurans, polycyclic aromatic hydrocarbons, organophosphorus and carbamate insecticides, herbicides and organic fuels, especially gasoline and diesel. They can also be complex mixture of organic chemicals, heavy metals and microbes from septic systems, animal wastes and other sources of organic inputs. Phytoremediation is an emerging technology which can be used for remediation of soil from organic pollutants. In this chapter an attempt has been made to discuss about the sources of organic pollutants, factors that influenced the uptake of organic pollutants by plants, the different mechanism responsible for organic pollutants, phytoremediation of organic pollutants and their advantages and limitation.
{"title":"Persistant Organic Pollutants in Soil and Its Phytoremediation","authors":"M. Begum, B. Sarmah, G. G. Kandali, S. Kalita, Ipsita Ojha, Raktim Bhagawati, Lipika Talukdar","doi":"10.5772/intechopen.99835","DOIUrl":"https://doi.org/10.5772/intechopen.99835","url":null,"abstract":"Persistent organic pollutants (POPs) of soil mainly exhibit toxic characteristics that posses hazard to whole mankind. These toxic pollutants includes several group of compound viz., polychlorinated biphenyls, polybrominated biphenyls, polychlorinated dibenzofurans, polycyclic aromatic hydrocarbons, organophosphorus and carbamate insecticides, herbicides and organic fuels, especially gasoline and diesel. They can also be complex mixture of organic chemicals, heavy metals and microbes from septic systems, animal wastes and other sources of organic inputs. Phytoremediation is an emerging technology which can be used for remediation of soil from organic pollutants. In this chapter an attempt has been made to discuss about the sources of organic pollutants, factors that influenced the uptake of organic pollutants by plants, the different mechanism responsible for organic pollutants, phytoremediation of organic pollutants and their advantages and limitation.","PeriodicalId":339227,"journal":{"name":"Biodegradation [Working Title]","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128936726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-27DOI: 10.5772/intechopen.99627
A. V. Meera, Manorama Thampatti Kc, J. John, B. Sudha, A. Sajeena
Over use of chemical inputs and exploitation of natural resources have degraded our ecosystem to a large extent. Our water bodies are drastically affected, especially due to the impact of heavy metal loading. The biomagnification that results from these difficult to degrade metals is naturally affecting the human health. The physical and chemical methods commonly employed for water purification are not only highly expensive but also further aggravate the pollution problem. Hence, all efforts must be taken to exploit the emerging green technology approach in pollution remediation. Several aquatic plants have specific affinity towards heavy metals and they flourish well in this contaminated environment. The common mechanisms of phytoremediation and varied type of aquatic plants with high remediation potential are reviewed in this chapter.
{"title":"Aquatic Plants as Bioremediators in Pollution Abatement of Heavy Metals","authors":"A. V. Meera, Manorama Thampatti Kc, J. John, B. Sudha, A. Sajeena","doi":"10.5772/intechopen.99627","DOIUrl":"https://doi.org/10.5772/intechopen.99627","url":null,"abstract":"Over use of chemical inputs and exploitation of natural resources have degraded our ecosystem to a large extent. Our water bodies are drastically affected, especially due to the impact of heavy metal loading. The biomagnification that results from these difficult to degrade metals is naturally affecting the human health. The physical and chemical methods commonly employed for water purification are not only highly expensive but also further aggravate the pollution problem. Hence, all efforts must be taken to exploit the emerging green technology approach in pollution remediation. Several aquatic plants have specific affinity towards heavy metals and they flourish well in this contaminated environment. The common mechanisms of phytoremediation and varied type of aquatic plants with high remediation potential are reviewed in this chapter.","PeriodicalId":339227,"journal":{"name":"Biodegradation [Working Title]","volume":"92 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114122961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-07DOI: 10.5772/intechopen.98961
D. Roy, D. Sreekanth, Deepak P. Pawar, H. Mahawar, K. K. Barman
Arsenic (As) is the one the most toxic element present in earth which poses a serious threat to the environment and human health. Arsenic contamination of drinking water in South and Southeast Asia reported one of the most threatening problems that causes serious health hazard of millions of people of India and Bangladesh. Further, use of arsenic contaminated ground water for irrigation purpose causes entry of arsenic in food crops, especially in Rice and other vegetable crops. Currently various chemical technologies utilized for As removal from contaminated water like adsorption and co-precipitation using salts, activated charcoal, ion exchange, membrane filtration etc. are very costly and cannot be used for large scale for drinking and agriculture use. In contrast, phytoremediation utilizes green plats to remove pollutants from contaminated water using various mechanisms such as rhizofiltration, phytoextraction, phytostabilization, phytodegrartion and phytovolatilization. A large numbers of terrestrial and aquatic weed flora have been identified so far having hyper metal, metalloid and organic pollutant removal capacity. Among the terrestrial weed flora Arundo donax, Typha latifolia, Typha angustifolia, Vetivaria zizinoids etc. are the hyper As accumulator. Similarly Eicchornea crassipes (Water hyacinth), Pistia stratiotes (water lettuce), Lemna minor (duck weed), Hyrdilla verticillata, Ceratophyllum demersum, Spirodella polyrhiza, Azola, Wolfia spp., etc. are also capable to extract higher amount of arsenic from contaminated water. These weed flora having As tolerance mechanism in their system and thus remediate As contaminated water vis-à-vis continue their life cycle. In this chapter we will discuss about As extraction potential of various aquatic and semi aquatic weeds from contaminated water, their tolerance mechanism, future scope and their application in future world mitigating As contamination in water resources.
{"title":"Phytoremediation of Arsenic Contaminated Water Using Aquatic, Semi-Aquatic and Submerged Weeds","authors":"D. Roy, D. Sreekanth, Deepak P. Pawar, H. Mahawar, K. K. Barman","doi":"10.5772/intechopen.98961","DOIUrl":"https://doi.org/10.5772/intechopen.98961","url":null,"abstract":"Arsenic (As) is the one the most toxic element present in earth which poses a serious threat to the environment and human health. Arsenic contamination of drinking water in South and Southeast Asia reported one of the most threatening problems that causes serious health hazard of millions of people of India and Bangladesh. Further, use of arsenic contaminated ground water for irrigation purpose causes entry of arsenic in food crops, especially in Rice and other vegetable crops. Currently various chemical technologies utilized for As removal from contaminated water like adsorption and co-precipitation using salts, activated charcoal, ion exchange, membrane filtration etc. are very costly and cannot be used for large scale for drinking and agriculture use. In contrast, phytoremediation utilizes green plats to remove pollutants from contaminated water using various mechanisms such as rhizofiltration, phytoextraction, phytostabilization, phytodegrartion and phytovolatilization. A large numbers of terrestrial and aquatic weed flora have been identified so far having hyper metal, metalloid and organic pollutant removal capacity. Among the terrestrial weed flora Arundo donax, Typha latifolia, Typha angustifolia, Vetivaria zizinoids etc. are the hyper As accumulator. Similarly Eicchornea crassipes (Water hyacinth), Pistia stratiotes (water lettuce), Lemna minor (duck weed), Hyrdilla verticillata, Ceratophyllum demersum, Spirodella polyrhiza, Azola, Wolfia spp., etc. are also capable to extract higher amount of arsenic from contaminated water. These weed flora having As tolerance mechanism in their system and thus remediate As contaminated water vis-à-vis continue their life cycle. In this chapter we will discuss about As extraction potential of various aquatic and semi aquatic weeds from contaminated water, their tolerance mechanism, future scope and their application in future world mitigating As contamination in water resources.","PeriodicalId":339227,"journal":{"name":"Biodegradation [Working Title]","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129442077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-03DOI: 10.5772/intechopen.96919
Nibal Khaleel Mousa, Abdul-Jabbar A. Ali, M. Hussein
The Bacillus megaterium ability was evaluated in this paper to degrade the Glyphosate. organophosphorus pesticides, The bacteria re-cultured that isolated from other researches of Baghdad soils and morphological identification and biochemical tests besides by selectivity media. The (5 and 25) ppm showed the highest growth results were within two days to two months on mineral salt media. The highest glyphosate degradation ratio % were (70) % per 25 ppm/two months. Incubation period Increasing led to highest glyphosate degradation ratio% at (25) ppm led to conclusion that bacteria digestive the pesticides as carbon and nitrogen sources and will be well harvest it form contaminated areas.
{"title":"Bacillus megaterium Biodegradation Glyphosate","authors":"Nibal Khaleel Mousa, Abdul-Jabbar A. Ali, M. Hussein","doi":"10.5772/intechopen.96919","DOIUrl":"https://doi.org/10.5772/intechopen.96919","url":null,"abstract":"The Bacillus megaterium ability was evaluated in this paper to degrade the Glyphosate. organophosphorus pesticides, The bacteria re-cultured that isolated from other researches of Baghdad soils and morphological identification and biochemical tests besides by selectivity media. The (5 and 25) ppm showed the highest growth results were within two days to two months on mineral salt media. The highest glyphosate degradation ratio % were (70) % per 25 ppm/two months. Incubation period Increasing led to highest glyphosate degradation ratio% at (25) ppm led to conclusion that bacteria digestive the pesticides as carbon and nitrogen sources and will be well harvest it form contaminated areas.","PeriodicalId":339227,"journal":{"name":"Biodegradation [Working Title]","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128712318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}