Sepsis, a life-threatening condition resulting from the body’s response to an infection, remains a major global health concern. One of the critical complications associated with sepsis is coagulopathy, characterized by dysregulated blood clotting and a heightened risk of both thrombosis and bleeding. This abstract aims to provide a concise overview of the intricate interplay between sepsis and coagulopathy, shedding light on the underlying mechanisms and clinical implications.
{"title":"Sepsis-Induced Coagulopathy","authors":"Gaurav Kochhar, Yatin Mehta","doi":"10.25259/jccc_24s1_ym","DOIUrl":"https://doi.org/10.25259/jccc_24s1_ym","url":null,"abstract":"Sepsis, a life-threatening condition resulting from the body’s response to an infection, remains a major global health concern. One of the critical complications associated with sepsis is coagulopathy, characterized by dysregulated blood clotting and a heightened risk of both thrombosis and bleeding. This abstract aims to provide a concise overview of the intricate interplay between sepsis and coagulopathy, shedding light on the underlying mechanisms and clinical implications.","PeriodicalId":34567,"journal":{"name":"Journal of Cardiac Critical Care TSS","volume":"50 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139606858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Transfusion therapy has undergone a significant evolution from whole blood transfusions to highly specialized blood component therapy. There is enough evidence in the literature that estimates that half of the transfusions given to the patients were actually not required as their hemoglobin can be improved with the help of alternative methods. The introduction of patient blood management (PBM) marks a paradigm shift in clinical transfusion practice and anemia management, emphasizing a patient-centric approach. PBM strategies aim to preserve and improve the patient’s blood, thereby reducing the need for allogeneic blood transfusions. PBM strategies include treating anemia, correcting coagulopathy, and minimizing blood loss. Every healthcare facility should plan to implement PBM as a multidisciplinary and multi-professional program, requiring collaboration from clinicians, public health professionals, and hospital administration. Thus, PBM implementation requires a comprehensive business plan, evidence-based transfusion guidelines, education, and a clinical decision support system. Data acquisition, analysis, audits, and reports play a crucial role in continuously improving the healthcare system and enhancing patient safety.
{"title":"Rational Transfusion in Clinical Practice: Walking the Tight Rope","authors":"Ratti Ram Sharma","doi":"10.25259/jccc_24s1_rs","DOIUrl":"https://doi.org/10.25259/jccc_24s1_rs","url":null,"abstract":"Transfusion therapy has undergone a significant evolution from whole blood transfusions to highly specialized blood component therapy. There is enough evidence in the literature that estimates that half of the transfusions given to the patients were actually not required as their hemoglobin can be improved with the help of alternative methods. The introduction of patient blood management (PBM) marks a paradigm shift in clinical transfusion practice and anemia management, emphasizing a patient-centric approach. PBM strategies aim to preserve and improve the patient’s blood, thereby reducing the need for allogeneic blood transfusions. PBM strategies include treating anemia, correcting coagulopathy, and minimizing blood loss. Every healthcare facility should plan to implement PBM as a multidisciplinary and multi-professional program, requiring collaboration from clinicians, public health professionals, and hospital administration. Thus, PBM implementation requires a comprehensive business plan, evidence-based transfusion guidelines, education, and a clinical decision support system. Data acquisition, analysis, audits, and reports play a crucial role in continuously improving the healthcare system and enhancing patient safety.","PeriodicalId":34567,"journal":{"name":"Journal of Cardiac Critical Care TSS","volume":"30 44","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139608034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Key questions in bleeding management are “Why does my patient bleed?” and “How to fix it?” To answer the first question, the high negative predictive value of viscoelastic testing can be used to identify coagulopathic bleeding. Accordingly, goal-directed bleeding management (GDBM) guided by viscoelastic testing has been shown to be an effective and essential part of the second pillar of patient blood management (PBM) with the aim to improve patients’ outcomes and safety. Patient’s medical and drug history – with a focus on medication with oral anticoagulants and antiplatelet drugs – are important in emergency, urgent, and elective surgery. Furthermore, risk scores have been developed and validated for traumatic and obstetric hemorrhage and can be helpful tools to predict severe hemorrhage and the need for massive transfusion. Acidosis, hypocalcemia, anemia, and hypothermia (“diamond of death in trauma”) are important basic conditions for hemostasis and good predictors of coagulopathy and should be closely monitored by blood gas analysis and corrected in bleeding patients. Earlier time to hemostasis was associated with decreased mortality in trauma studies. Therefore, GDBM aims to stop the bleeding as soon as possible and avoid the main killers in blood transfusion: Transfusion-associated circulatory overload, transfusion-related acute lung injury, transfusion-related immune modulation, and thrombosis. Thromboelastometry-guided bleeding management follows the concepts of Good Medical Practice and Precision Medicine. Here, rotational thromboelastometry (ROTEM)-guided bleeding management algorithms are using a stepwise approach based on the sequence “Treat first what kills first:” (1) Fibrinolysis management, (2) clot firmness management, (3) thrombin generation management, and (4) avoidance of hypercoagulability and thrombosis. Here, thromboelastometry can not only identify patients with hypercoagulability and increased risk of thrombosis but also ROTEM-guided bleeding management can avoid thromboembolic complications, too. This may support the idea of personalized antithrombotic therapy guided by viscoelastic testing in the postoperative period. Finally, PBM is not about blood transfusion: It is about patients’ outcomes. Accordingly, several meta-analyses based on more than 20 randomized controlled trials on the effect of viscoelastic testing-guided perioperative bleeding management did not only demonstrate a significant reduction in transfusion requirements but also a significant reduction in mortality and postoperative acute kidney injury. The reduction in postoperative acute kidney injury again has a significant impact on long-term survival. Accordingly, recent PBM guidelines recommend the implementation of viscoelastic testing-guided bleeding management algorithms with a 1B or 1A recommendation. This is also addressed in the World Health Organization policy brief about the urgent need to implement PBM in all member states in a timely manner. H
{"title":"Massive Transfusion/Hemorrhage Protocols Versus Goal-Directed Bleeding Management: Science Gone Eerie?","authors":"Klaus Görlinger, P. Kapoor","doi":"10.25259/jccc_24s1_kg","DOIUrl":"https://doi.org/10.25259/jccc_24s1_kg","url":null,"abstract":"Key questions in bleeding management are “Why does my patient bleed?” and “How to fix it?” To answer the first question, the high negative predictive value of viscoelastic testing can be used to identify coagulopathic bleeding. Accordingly, goal-directed bleeding management (GDBM) guided by viscoelastic testing has been shown to be an effective and essential part of the second pillar of patient blood management (PBM) with the aim to improve patients’ outcomes and safety. Patient’s medical and drug history – with a focus on medication with oral anticoagulants and antiplatelet drugs – are important in emergency, urgent, and elective surgery. Furthermore, risk scores have been developed and validated for traumatic and obstetric hemorrhage and can be helpful tools to predict severe hemorrhage and the need for massive transfusion. Acidosis, hypocalcemia, anemia, and hypothermia (“diamond of death in trauma”) are important basic conditions for hemostasis and good predictors of coagulopathy and should be closely monitored by blood gas analysis and corrected in bleeding patients. Earlier time to hemostasis was associated with decreased mortality in trauma studies. Therefore, GDBM aims to stop the bleeding as soon as possible and avoid the main killers in blood transfusion: Transfusion-associated circulatory overload, transfusion-related acute lung injury, transfusion-related immune modulation, and thrombosis. Thromboelastometry-guided bleeding management follows the concepts of Good Medical Practice and Precision Medicine. Here, rotational thromboelastometry (ROTEM)-guided bleeding management algorithms are using a stepwise approach based on the sequence “Treat first what kills first:” (1) Fibrinolysis management, (2) clot firmness management, (3) thrombin generation management, and (4) avoidance of hypercoagulability and thrombosis. Here, thromboelastometry can not only identify patients with hypercoagulability and increased risk of thrombosis but also ROTEM-guided bleeding management can avoid thromboembolic complications, too. This may support the idea of personalized antithrombotic therapy guided by viscoelastic testing in the postoperative period. Finally, PBM is not about blood transfusion: It is about patients’ outcomes. Accordingly, several meta-analyses based on more than 20 randomized controlled trials on the effect of viscoelastic testing-guided perioperative bleeding management did not only demonstrate a significant reduction in transfusion requirements but also a significant reduction in mortality and postoperative acute kidney injury. The reduction in postoperative acute kidney injury again has a significant impact on long-term survival. Accordingly, recent PBM guidelines recommend the implementation of viscoelastic testing-guided bleeding management algorithms with a 1B or 1A recommendation. This is also addressed in the World Health Organization policy brief about the urgent need to implement PBM in all member states in a timely manner. H","PeriodicalId":34567,"journal":{"name":"Journal of Cardiac Critical Care TSS","volume":"36 19","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139608788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"From the Publisher’s Desk","authors":"Sunny Duttagupta","doi":"10.25259/jccc_24s1_sdg","DOIUrl":"https://doi.org/10.25259/jccc_24s1_sdg","url":null,"abstract":"","PeriodicalId":34567,"journal":{"name":"Journal of Cardiac Critical Care TSS","volume":"27 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139608849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Patient blood management involves a three pillar approach to optimizing. The first pillar was optimizing the red cell mass. In doing so, a goal-oriented patient care approach is needed to obtain improved clinical outcomes. All of this requires the application of published evidence and utilizing best clinical practice.
{"title":"Optimizing Red Blood Cell Mass, the First Pillar of PBM – First Things First","authors":"Nilmini Wijesuriya","doi":"10.25259/jccc_24s1_nw","DOIUrl":"https://doi.org/10.25259/jccc_24s1_nw","url":null,"abstract":"Patient blood management involves a three pillar approach to optimizing. The first pillar was optimizing the red cell mass. In doing so, a goal-oriented patient care approach is needed to obtain improved clinical outcomes. All of this requires the application of published evidence and utilizing best clinical practice.","PeriodicalId":34567,"journal":{"name":"Journal of Cardiac Critical Care TSS","volume":"33 29","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139607601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A 18-months-old male child diagnosed with anomalous origin of left coronary artery from the left posterior pulmonary sinus underwent the modification of the “trapdoor” technique, wherein the anomalous left coronary artery was detached from the pulmonary arterial sinus, and combined aortic and pulmonary arterial flaps were used to augment its length. The postoperative recovery was uneventful.
{"title":"Technical Details of a Novel Surgical Procedure of Anomalous Left Coronary Artery from the Pulmonary Trunk in a Child Using Autogenous Aortic and Pulmonary Arterial Flaps (UKC’s Modification): A Video Presentation","authors":"U. Chowdhury, Niwin George, S. Goja","doi":"10.25259/jccc_24s1_uc","DOIUrl":"https://doi.org/10.25259/jccc_24s1_uc","url":null,"abstract":"A 18-months-old male child diagnosed with anomalous origin of left coronary artery from the left posterior pulmonary sinus underwent the modification of the “trapdoor” technique, wherein the anomalous left coronary artery was detached from the pulmonary arterial sinus, and combined aortic and pulmonary arterial flaps were used to augment its length. The postoperative recovery was uneventful.","PeriodicalId":34567,"journal":{"name":"Journal of Cardiac Critical Care TSS","volume":"40 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139608728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Transposition of great arteries (TGA) is a common cause of cyanotic newborns. There is an atrioventricular concordance with ventriculoarterial discordance. This parallel circulation is incompatible with life unless communication exists for the inter-circulatory mixing of blood. Balloon atrial septostomy (BAS) is a percutaneously performed interventional procedure in catheterization laboratory, usually in patients with TGA-intact ventricular septum (IVS) to ensure admixture of oxygenated and deoxygenated blood thus improving systemic oxygen delivery, to achieve hemodynamic stability before the definitive procedure (Arterial switch operation), and to determine the risk of intraprocedural complications in neonates undergoing balloon atrial septostomy. This is a retrospective observational study, which included neonatal patients during a single year. All the data were collected from the medical record section of the hospital. We included 17 neonates with TGA transferred to our center for definite treatment. Six cases were done under sedation and 11 under general anesthesia. The mean age at the time of BAS was 4.8 days. Procedure-related complications occurred in 41% of patients. In one of the cases, difficult airway management made the periprocedural course daunting. Complications included intraprocedural balloon rupture (1 case), transient atrial arrhythmia (4 cases), hypotension (1 case), and pericardial tamponade due to left atrial wall puncture (1 case). BAS is a safe and effective palliative procedure for TGA-IVS, with good immediate results in our institution. Maintaining cardiorespiratory stability, prevention of respiratory depression in a spontaneously breathing neonate, and maintenance of normothermia in the cold temperature of the catheterization laboratory, with eternal vigilance, forms the cornerstone of a successful neonatal outcome.
{"title":"A Retrospective Observational Study in Neonates with Transposition of Great Arteries Undergoing Balloon Atrial Septostomy in a Tertiary Care Hospital","authors":"Mohanish Badge, Minati Choudhury, P. B","doi":"10.25259/jccc_24s1_mb","DOIUrl":"https://doi.org/10.25259/jccc_24s1_mb","url":null,"abstract":"\u0000\u0000Transposition of great arteries (TGA) is a common cause of cyanotic newborns. There is an atrioventricular concordance with ventriculoarterial discordance. This parallel circulation is incompatible with life unless communication exists for the inter-circulatory mixing of blood. Balloon atrial septostomy (BAS) is a percutaneously performed interventional procedure in catheterization laboratory, usually in patients with TGA-intact ventricular septum (IVS) to ensure admixture of oxygenated and deoxygenated blood thus improving systemic oxygen delivery, to achieve hemodynamic stability before the definitive procedure (Arterial switch operation), and to determine the risk of intraprocedural complications in neonates undergoing balloon atrial septostomy.\u0000\u0000\u0000\u0000This is a retrospective observational study, which included neonatal patients during a single year. All the data were collected from the medical record section of the hospital.\u0000\u0000\u0000\u0000We included 17 neonates with TGA transferred to our center for definite treatment. Six cases were done under sedation and 11 under general anesthesia. The mean age at the time of BAS was 4.8 days. Procedure-related complications occurred in 41% of patients. In one of the cases, difficult airway management made the periprocedural course daunting. Complications included intraprocedural balloon rupture (1 case), transient atrial arrhythmia (4 cases), hypotension (1 case), and pericardial tamponade due to left atrial wall puncture (1 case).\u0000\u0000\u0000\u0000BAS is a safe and effective palliative procedure for TGA-IVS, with good immediate results in our institution. Maintaining cardiorespiratory stability, prevention of respiratory depression in a spontaneously breathing neonate, and maintenance of normothermia in the cold temperature of the catheterization laboratory, with eternal vigilance, forms the cornerstone of a successful neonatal outcome.\u0000","PeriodicalId":34567,"journal":{"name":"Journal of Cardiac Critical Care TSS","volume":"38 20","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139608902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Transfusion of blood components or products is among the most common procedures performed during a patient’s stay in the hospital. However, apart from being life-saving in exsanguination, blood transfusion is also associated with adverse events such as transfusion-transmitted infections, allergic reactions, transfusion-associated circulatory overload, transfusion-related acute lung injury, and transfusion-related immunomodulation with nosocomial infections and cancer recurrence. These potentially fatal complications have raised perennial concerns among healthcare professionals with regard to blood transfusion and patient outcomes. Thus, in the last few decades, the safety of the blood product has remained the key focus area for almost every stakeholder, whether end user or policy maker. Optimal use of blood is a globally recognized and recommended policy that ensures that the right amount and type of blood component is transfused to the right patient at the right time. Essentially, it focuses on improving the safety and effectiveness of the clinical transfusion process. However, with the evolving knowledge around transfusion science, increasing involvement of surgeons, anesthesiologists, and other specialists in transfusion offerings and proceedings, and the accumulating evidence on the fact that blood transfusion can, often, be more detrimental to a patient’s clinical status rather than benefiting it, has led to the endorsement and establishment of policy(ies) for optimal use of blood. Patient blood management (PBM), a concept coined and introduced almost two decades ago, encompasses, rather comprehensively, not just the policies and procedures of optimal use of blood and restricting transfusion to as minimum as possible but has a scope that spans much beyond that. PBM is driven and implemented through the three-pillar and nine-field matrix that incorporates the objectives of optimizing hematopoiesis, minimizing bleeding and blood loss, and harnessing and optimizing the physiological tolerance of anemia within the preoperative, intraoperative, and postoperative settings. PBM focuses on patient safety rather than product safety and, thus, ensures adopting a customized approach toward judicious and clinical use of the precious resource, blood. The principles and practices of PBM gained significant relevance and acceptability in the past few years, especially after the pandemic of COVID-19 when the World Health Organization issued a policy brief on its urgent implementation. Through this review article, we intend to establish not just the impact of PBM implementation towards improvement in patient outcomes but also the fact that the relevance and means of PBM extend far above and beyond just the optimal use of blood.
{"title":"Patient Blood Management: Moving Above and Beyond the Optimal Use of Blood!","authors":"Ajay Gandhi","doi":"10.25259/jccc_24s1_ag","DOIUrl":"https://doi.org/10.25259/jccc_24s1_ag","url":null,"abstract":"Transfusion of blood components or products is among the most common procedures performed during a patient’s stay in the hospital. However, apart from being life-saving in exsanguination, blood transfusion is also associated with adverse events such as transfusion-transmitted infections, allergic reactions, transfusion-associated circulatory overload, transfusion-related acute lung injury, and transfusion-related immunomodulation with nosocomial infections and cancer recurrence. These potentially fatal complications have raised perennial concerns among healthcare professionals with regard to blood transfusion and patient outcomes. Thus, in the last few decades, the safety of the blood product has remained the key focus area for almost every stakeholder, whether end user or policy maker. Optimal use of blood is a globally recognized and recommended policy that ensures that the right amount and type of blood component is transfused to the right patient at the right time. Essentially, it focuses on improving the safety and effectiveness of the clinical transfusion process. However, with the evolving knowledge around transfusion science, increasing involvement of surgeons, anesthesiologists, and other specialists in transfusion offerings and proceedings, and the accumulating evidence on the fact that blood transfusion can, often, be more detrimental to a patient’s clinical status rather than benefiting it, has led to the endorsement and establishment of policy(ies) for optimal use of blood. Patient blood management (PBM), a concept coined and introduced almost two decades ago, encompasses, rather comprehensively, not just the policies and procedures of optimal use of blood and restricting transfusion to as minimum as possible but has a scope that spans much beyond that. PBM is driven and implemented through the three-pillar and nine-field matrix that incorporates the objectives of optimizing hematopoiesis, minimizing bleeding and blood loss, and harnessing and optimizing the physiological tolerance of anemia within the preoperative, intraoperative, and postoperative settings. PBM focuses on patient safety rather than product safety and, thus, ensures adopting a customized approach toward judicious and clinical use of the precious resource, blood. The principles and practices of PBM gained significant relevance and acceptability in the past few years, especially after the pandemic of COVID-19 when the World Health Organization issued a policy brief on its urgent implementation. Through this review article, we intend to establish not just the impact of PBM implementation towards improvement in patient outcomes but also the fact that the relevance and means of PBM extend far above and beyond just the optimal use of blood.","PeriodicalId":34567,"journal":{"name":"Journal of Cardiac Critical Care TSS","volume":"96 16","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139606007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ewing’s sarcoma belongs to primitive neuroectodermal tumors. Renal Ewing’s sarcoma is an extremely rare tumor that can progress to the inferior vena cava (IVC) or right atrium (RA). Renal tumors with IVC/RA extension entail removal of the tumor, including tumor thrombus in IVC with or without the use of cardiopulmonary bypass, depending on the tumor thrombus extent. Intra-operative transesophageal echocardiography provides the latest staging of tumor thrombus, its characteristics, and mobility, guides IVC clamping for tumor removal, aids in troubleshooting hemodynamic instability, and monitors completeness of tumor removal post-procedure. Transesophageal echocardiographic examination forms an indispensable part of intra-operative management in any case of IVC tumor thrombus removal.
{"title":"Role of Intra-operative Transesophageal Echocardiographic Examination in Inferior Vena Cava Tumor Thrombus Removal in a Case of Renal Ewing’s Sarcoma","authors":"Mohanish Badge, Minati Choudhury, P. Kapoor","doi":"10.25259/jccc_50_2023","DOIUrl":"https://doi.org/10.25259/jccc_50_2023","url":null,"abstract":"Ewing’s sarcoma belongs to primitive neuroectodermal tumors. Renal Ewing’s sarcoma is an extremely rare tumor that can progress to the inferior vena cava (IVC) or right atrium (RA). Renal tumors with IVC/RA extension entail removal of the tumor, including tumor thrombus in IVC with or without the use of cardiopulmonary bypass, depending on the tumor thrombus extent. Intra-operative transesophageal echocardiography provides the latest staging of tumor thrombus, its characteristics, and mobility, guides IVC clamping for tumor removal, aids in troubleshooting hemodynamic instability, and monitors completeness of tumor removal post-procedure. Transesophageal echocardiographic examination forms an indispensable part of intra-operative management in any case of IVC tumor thrombus removal.","PeriodicalId":34567,"journal":{"name":"Journal of Cardiac Critical Care TSS","volume":" 17","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139626849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Financial Literacy for Anesthesiologists","authors":"Deepanshu Dang","doi":"10.25259/jccc_44_2023","DOIUrl":"https://doi.org/10.25259/jccc_44_2023","url":null,"abstract":"","PeriodicalId":34567,"journal":{"name":"Journal of Cardiac Critical Care TSS","volume":"33 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139384342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}