首页 > 最新文献

Proceedings of the first Workshop on Emerging Technologies for software-defined and reconfigurable hardware-accelerated Cloud Datacenters最新文献

英文 中文
An Experimental Comparison Between Genetic Algorithm and Particle Swarm Optimization in Spark Performance Tuning 遗传算法与粒子群算法在火花性能调优中的实验比较
Yuzhao Wang, Qixiao Liu, Junqing Yu, Zhibin Yu
The most popular in-memory computing framework --- Spark --- has a number of performance-critical configuration parameters. Manually tuning these parameters for optimized performance is not practical because the parameter tuning space is huge. Searching algorithms such as genetic algorithm can be used to automatically search the optimal configurations. However, there are several such algorithms and it is unclear which one is better in the case of Spark configuration parameter tuning. To address this issue, we experimentally compare two searching algorithms --- the Genetic Algorithm (GA) and the Particle Swarm Optimization (PSO) --- in searching the optimal configurations for Spark applications. We made several interesting observations. For one, PSO converges 2x faster than GA but the performance tuned by the configuration parameters found by PSO is slightly poorer than that by GA. Second, PSO shows better scalability with respect to the number of configuration parameters than GA. Finally, we find PSO is more robust than GA across different searching processes. Based on these observations, we recommend one to use PSO in Spark performance tuning context.
最流行的内存计算框架—Spark—具有许多性能关键型配置参数。手动调优这些参数以优化性能是不切实际的,因为参数调优空间非常大。可以使用遗传算法等搜索算法自动搜索最优配置。然而,有几种这样的算法,在Spark配置参数调优的情况下,还不清楚哪一种更好。为了解决这个问题,我们实验比较了两种搜索算法——遗传算法(GA)和粒子群优化(PSO)——在搜索Spark应用程序的最佳配置。我们做了一些有趣的观察。一方面,粒子群算法的收敛速度比遗传算法快2倍,但粒子群算法通过配置参数调整的性能略低于遗传算法。其次,粒子群算法在配置参数数量方面比遗传算法表现出更好的可扩展性。最后,我们发现在不同的搜索过程中,粒子群算法比遗传算法具有更强的鲁棒性。基于这些观察,我们建议在Spark性能调优上下文中使用PSO。
{"title":"An Experimental Comparison Between Genetic Algorithm and Particle Swarm Optimization in Spark Performance Tuning","authors":"Yuzhao Wang, Qixiao Liu, Junqing Yu, Zhibin Yu","doi":"10.1145/3129457.3129494","DOIUrl":"https://doi.org/10.1145/3129457.3129494","url":null,"abstract":"The most popular in-memory computing framework --- Spark --- has a number of performance-critical configuration parameters. Manually tuning these parameters for optimized performance is not practical because the parameter tuning space is huge. Searching algorithms such as genetic algorithm can be used to automatically search the optimal configurations. However, there are several such algorithms and it is unclear which one is better in the case of Spark configuration parameter tuning. To address this issue, we experimentally compare two searching algorithms --- the Genetic Algorithm (GA) and the Particle Swarm Optimization (PSO) --- in searching the optimal configurations for Spark applications. We made several interesting observations. For one, PSO converges 2x faster than GA but the performance tuned by the configuration parameters found by PSO is slightly poorer than that by GA. Second, PSO shows better scalability with respect to the number of configuration parameters than GA. Finally, we find PSO is more robust than GA across different searching processes. Based on these observations, we recommend one to use PSO in Spark performance tuning context.","PeriodicalId":345943,"journal":{"name":"Proceedings of the first Workshop on Emerging Technologies for software-defined and reconfigurable hardware-accelerated Cloud Datacenters","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132249794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Proceedings of the first Workshop on Emerging Technologies for software-defined and reconfigurable hardware-accelerated Cloud Datacenters 第一届软件定义和可重构硬件加速云数据中心新兴技术研讨会论文集
{"title":"Proceedings of the first Workshop on Emerging Technologies for software-defined and reconfigurable hardware-accelerated Cloud Datacenters","authors":"","doi":"10.1145/3129457","DOIUrl":"https://doi.org/10.1145/3129457","url":null,"abstract":"","PeriodicalId":345943,"journal":{"name":"Proceedings of the first Workshop on Emerging Technologies for software-defined and reconfigurable hardware-accelerated Cloud Datacenters","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131630729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Proceedings of the first Workshop on Emerging Technologies for software-defined and reconfigurable hardware-accelerated Cloud Datacenters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1