Contraventions of regulations regarding primary aromatic amines (PAAs) originating from azo dyes in commercial textile products and leather products in European Union (EU), notified in the period between 2006 and 2012 were collected from the Rapid Alert System for non-food consumer products (RAPEX), were characterized. Various types of products (clothes, footwear, bedding, etc.) and their raw materials (cotton, silk, viscose, leather, etc.) were reported to have contravened the regulations. The contravention frequencies for products made in China and India were higher than those for other countries. Ten percentage of the country in which the reported products were produced was unknown. The notification frequencies for benzidine and 4-aminoazobenzene were higher than those for other PAAs. Contravention of regulations regarding benzidine, 4-aminoazobenzene, and 3,3'-dimethoxybenzidine were notified every year. Contraventions of regulations regarding five PAAs--classified as IARC group 1--were notified one or several times. Since the scale of the survey conducted in Japan were small compared with RAPEX, it is necessary that many kinds and number of products should be surveyed in Japan. In addition, it is also necessary to pay attention to 4-aminoazobenzene, while it has not been detected in the previous studies conducted in Japan.
{"title":"[Characterization of cases contravening of regulations regarding primary aromatic amines originating from azo dyes in commercial textile products and leather products in European Union].","authors":"Tsuyoshi Kawakami, Kazuo Isama, Yoshiaki Ikarashi","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Contraventions of regulations regarding primary aromatic amines (PAAs) originating from azo dyes in commercial textile products and leather products in European Union (EU), notified in the period between 2006 and 2012 were collected from the Rapid Alert System for non-food consumer products (RAPEX), were characterized. Various types of products (clothes, footwear, bedding, etc.) and their raw materials (cotton, silk, viscose, leather, etc.) were reported to have contravened the regulations. The contravention frequencies for products made in China and India were higher than those for other countries. Ten percentage of the country in which the reported products were produced was unknown. The notification frequencies for benzidine and 4-aminoazobenzene were higher than those for other PAAs. Contravention of regulations regarding benzidine, 4-aminoazobenzene, and 3,3'-dimethoxybenzidine were notified every year. Contraventions of regulations regarding five PAAs--classified as IARC group 1--were notified one or several times. Since the scale of the survey conducted in Japan were small compared with RAPEX, it is necessary that many kinds and number of products should be surveyed in Japan. In addition, it is also necessary to pay attention to 4-aminoazobenzene, while it has not been detected in the previous studies conducted in Japan.</p>","PeriodicalId":35462,"journal":{"name":"Bulletin of National Institute of Health Sciences","volume":" 131","pages":"66-74"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31956987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Special reports on advanced drugs and cellular and tissue-based products].","authors":"","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":35462,"journal":{"name":"Bulletin of National Institute of Health Sciences","volume":" 131","pages":"1"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31956392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A training course for analysis of B vitamins in syrup products was undertaken at the National Agency of Drug and Food Control at Jakarta as part of the project to deliver safe drugs to people in Indonesia by Japan International Cooperation Agency. Analytical methods have been developed for quantitative determination of B vitamins by ion-pair high-performance liquid chromatography using 1-hexanesulfonic acid sodium salt. Measurements were performed for two syrup products removed from a drug store in Jakarta to determine the amount of each vitamin B. The measured values of riboflavin 5'-phosphate sodium, nicotinamide and pyridoxine hydrochloride were almost the same with those of nominal content for both products. While the measured values of thiamine hydrochloride, pantothenol and cyanocobalamin were approximately twice the amount of nominal contents.
{"title":"[Ion-pair HPLC analysis of B vitamins in syrup products in Indonesia].","authors":"Tamaki Miyazaki, Tadafumi Horisaki, Yukio Aso, Haruhiro Okuda","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>A training course for analysis of B vitamins in syrup products was undertaken at the National Agency of Drug and Food Control at Jakarta as part of the project to deliver safe drugs to people in Indonesia by Japan International Cooperation Agency. Analytical methods have been developed for quantitative determination of B vitamins by ion-pair high-performance liquid chromatography using 1-hexanesulfonic acid sodium salt. Measurements were performed for two syrup products removed from a drug store in Jakarta to determine the amount of each vitamin B. The measured values of riboflavin 5'-phosphate sodium, nicotinamide and pyridoxine hydrochloride were almost the same with those of nominal content for both products. While the measured values of thiamine hydrochloride, pantothenol and cyanocobalamin were approximately twice the amount of nominal contents.</p>","PeriodicalId":35462,"journal":{"name":"Bulletin of National Institute of Health Sciences","volume":" 131","pages":"58-65"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31956986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Evaluation of safety and functional effect of factors or molecules which are concerning cellular development, differentiation and signal transduction].","authors":"","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":35462,"journal":{"name":"Bulletin of National Institute of Health Sciences","volume":" 130","pages":"78-86"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31126016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the 8th edition of Japan's Specifications and Standards for Food Additives, the purity test for silicone resins requires the determination of the refractive index and kinetic viscosity of the extracted silicone oil, and allows for only a limited amount of silicon dioxide. In the purity test, carbon tetrachloride is used to separate the silicone oil and silicon dioxide. To exclude carbon tetrachloride, methods were developed for separating the silicone oil and silicon dioxide from silicone resin, which use hexane and 10% n-dodecylbenzenesulfonic acid in hexane. For silicone oil, the measured refractive index and kinetic viscosity of the silicone oil obtained from the hexane extract were shown to be equivalent to those of the intact silicone oil. In regard to silicon dioxide, it was confirmed that, following the separation with 10% n-dodecylbenzenesulfonic acid in hexane, the level of silicon dioxide in silicone resin can be accurately determined. Therefore, in this study, we developed a method for testing the purity of silicone resins without the use of carbon tetrachloride, which is a harmful reagent.
{"title":"[Study of purity tests for silicone resins].","authors":"Kyoko Sato, Noriko Otsuki, Akio Ohori, Mitsuru Chinda, Noriko Furusho, Tsutomu Osako, Hiroshi Akiyama, Yoko Kawamura","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>In the 8th edition of Japan's Specifications and Standards for Food Additives, the purity test for silicone resins requires the determination of the refractive index and kinetic viscosity of the extracted silicone oil, and allows for only a limited amount of silicon dioxide. In the purity test, carbon tetrachloride is used to separate the silicone oil and silicon dioxide. To exclude carbon tetrachloride, methods were developed for separating the silicone oil and silicon dioxide from silicone resin, which use hexane and 10% n-dodecylbenzenesulfonic acid in hexane. For silicone oil, the measured refractive index and kinetic viscosity of the silicone oil obtained from the hexane extract were shown to be equivalent to those of the intact silicone oil. In regard to silicon dioxide, it was confirmed that, following the separation with 10% n-dodecylbenzenesulfonic acid in hexane, the level of silicon dioxide in silicone resin can be accurately determined. Therefore, in this study, we developed a method for testing the purity of silicone resins without the use of carbon tetrachloride, which is a harmful reagent.</p>","PeriodicalId":35462,"journal":{"name":"Bulletin of National Institute of Health Sciences","volume":" 130","pages":"71-4"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31126014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the market of medical devices, non-Japanese products hold a large part even in Japan. To overcome this situation, the Japanese government has been announcing policies to encourage the medical devices industry, such as the 5-year strategy for medical innovation (June 6, 2012). The Division of Medical Devices has been contributing to rapid marketing of medical devices by working out the standards for approval review and accreditation of medical devices, guidances on evaluation of medical devices with emerging technology, and test methods for biological safety evaluation of medical devices, as a part of practice in the field of regulatory science. The recent outcomes are 822 standards of accreditation for Class II medical devices, 14 guidances on safety evaluation of medical devices with emerging technology, and the revised test methods for biological safety evaluation (MHLW Notification by Director, OMDE, Yakushokuki-hatsu 0301 No. 20 "Basic Principles of Biological Safety Evaluation Required for Application for Approval to Market Medical Devices").
{"title":"[Industry regulation and its relationship to the rapid marketing of medical devices].","authors":"Atsuko Matsuoka","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>In the market of medical devices, non-Japanese products hold a large part even in Japan. To overcome this situation, the Japanese government has been announcing policies to encourage the medical devices industry, such as the 5-year strategy for medical innovation (June 6, 2012). The Division of Medical Devices has been contributing to rapid marketing of medical devices by working out the standards for approval review and accreditation of medical devices, guidances on evaluation of medical devices with emerging technology, and test methods for biological safety evaluation of medical devices, as a part of practice in the field of regulatory science. The recent outcomes are 822 standards of accreditation for Class II medical devices, 14 guidances on safety evaluation of medical devices with emerging technology, and the revised test methods for biological safety evaluation (MHLW Notification by Director, OMDE, Yakushokuki-hatsu 0301 No. 20 \"Basic Principles of Biological Safety Evaluation Required for Application for Approval to Market Medical Devices\").</p>","PeriodicalId":35462,"journal":{"name":"Bulletin of National Institute of Health Sciences","volume":" 130","pages":"13-20"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31127267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Phthalate esters are widely used as plasticizers in polyvinyl chloride products. Because of human health concerns, regulatory authorities in Japan, US, Europe and other countries control the use of di(2-ethylhexyl) phthalate, diisononyl phthalate, di-n-butyl phthalate, butylbenzyl phthalate, diisodecyl phthalate and di-n-octyl phthalate for the toys that can be put directly in infants' mouths. While these regulatory actions will likely reduce the usage of phthalate esters, there is concern that other plasticizers that have not been sufficiently evaluated for safety will be used more frequently. We therefore collected and evaluated the toxicological information on di(2-ethylhexyl) terephthalate (DEHT), 1,2-cyclohexanedicarboxylic acid, diisononyl ester (DINCH), diisononyl adipate (DINA), 2,2,4-trimetyl-1,3-pentanediol diisobutyrate (TXIB), tri-n-butyl citrate (TBC) and acetyl tri-n-butyl citrate (ATBC) which were detected at a relatively high frequency in toys. The collected data have shown that chronic exposure to DEHT affects the eye and nasal turbinate, and DINCH exerts effects on the thyroid and kidney in rats. DINA and TXIB have been reported to have hepatic and renal effects in dogs or rats, and ATBC slightly affected the liver in rats. The NOAELs for repeated dose toxicity are relatively low for DINCH (40 mg/kg bw/day) and TXIB (30 mg/kg bw/day) compared with DEHT, DINA and ATBC. DEHT, TXIB and ATBC have been reported to have reproductive/developmental effects at relatively high doses in rats. For DINA and TBC, available data are insufficient for assessing the hazards, and therefore, adequate toxicity studies should be conducted. In the present review, the toxicity information on 6 alternatives to phthalate plasticizers is summarized, focusing on the effects after oral exposure, which is the route of most concern.
{"title":"[Toxicity effects of phthalate substitute plasticizers used in toys].","authors":"Mutsuko Hirata-Koizumi, Mika Takahashi, Mariko Matsumoto, Tomoko Kawamura, Atsushi Ono, Akihiko Hirose","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Phthalate esters are widely used as plasticizers in polyvinyl chloride products. Because of human health concerns, regulatory authorities in Japan, US, Europe and other countries control the use of di(2-ethylhexyl) phthalate, diisononyl phthalate, di-n-butyl phthalate, butylbenzyl phthalate, diisodecyl phthalate and di-n-octyl phthalate for the toys that can be put directly in infants' mouths. While these regulatory actions will likely reduce the usage of phthalate esters, there is concern that other plasticizers that have not been sufficiently evaluated for safety will be used more frequently. We therefore collected and evaluated the toxicological information on di(2-ethylhexyl) terephthalate (DEHT), 1,2-cyclohexanedicarboxylic acid, diisononyl ester (DINCH), diisononyl adipate (DINA), 2,2,4-trimetyl-1,3-pentanediol diisobutyrate (TXIB), tri-n-butyl citrate (TBC) and acetyl tri-n-butyl citrate (ATBC) which were detected at a relatively high frequency in toys. The collected data have shown that chronic exposure to DEHT affects the eye and nasal turbinate, and DINCH exerts effects on the thyroid and kidney in rats. DINA and TXIB have been reported to have hepatic and renal effects in dogs or rats, and ATBC slightly affected the liver in rats. The NOAELs for repeated dose toxicity are relatively low for DINCH (40 mg/kg bw/day) and TXIB (30 mg/kg bw/day) compared with DEHT, DINA and ATBC. DEHT, TXIB and ATBC have been reported to have reproductive/developmental effects at relatively high doses in rats. For DINA and TBC, available data are insufficient for assessing the hazards, and therefore, adequate toxicity studies should be conducted. In the present review, the toxicity information on 6 alternatives to phthalate plasticizers is summarized, focusing on the effects after oral exposure, which is the route of most concern.</p>","PeriodicalId":35462,"journal":{"name":"Bulletin of National Institute of Health Sciences","volume":" 130","pages":"31-42"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31127735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Genetically modified (GM) animals can be classified into two groups, those developed for food purposes and those developed not for food purposes. We investigated the recent status of development of GM animals developed not for food purposes. Among the GM animals developed not for food purposes, GM fish, chickens, and pigs were selected because many articles have been published on these organisms. Relevant articles published between 2008 and 2011 were surveyed using PubMed and transgenic fish, chicken, or pig as keywords. Then, studies on organisms that could potentially contaminate the food chain with products from these GM animals were selected and analyzed. Fifteen articles on GM fish were found. These articles were classified into four categories: bioreactor (n = 4), resistance to microorganisms (n = 6), resistance to environmental stresses (n = 1), and detection of chemicals (n = 4). Zebrafish were used in 8 of the articles. Six, three, and three articles were reported from Taiwan, Canada and China. Seven articles on GM chickens were found. These articles were classified into two categories: bioreactor (n = 5), and resistance to pathogens (n = 2). Two articles were reported from Japan and Korea, each. As for GM pigs, 43 articles were found. These articles were classified into three categories: xenotransplantation (n = 36), bioreactor (n = 6), and environmental cleanup (n = 1). Nineteen, seven, six, and five articles were reported from USA, Germany, Korea and Taiwan, respectively. Understanding the recent development of GM animals produced not for food purpose is important for assuring the safety of food.
{"title":"[Study on recent status of development of genetically modified animals developed not for food purposes].","authors":"Osamu Nakajima, Hiroshi Akiyama, Reiko Teshima","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Genetically modified (GM) animals can be classified into two groups, those developed for food purposes and those developed not for food purposes. We investigated the recent status of development of GM animals developed not for food purposes. Among the GM animals developed not for food purposes, GM fish, chickens, and pigs were selected because many articles have been published on these organisms. Relevant articles published between 2008 and 2011 were surveyed using PubMed and transgenic fish, chicken, or pig as keywords. Then, studies on organisms that could potentially contaminate the food chain with products from these GM animals were selected and analyzed. Fifteen articles on GM fish were found. These articles were classified into four categories: bioreactor (n = 4), resistance to microorganisms (n = 6), resistance to environmental stresses (n = 1), and detection of chemicals (n = 4). Zebrafish were used in 8 of the articles. Six, three, and three articles were reported from Taiwan, Canada and China. Seven articles on GM chickens were found. These articles were classified into two categories: bioreactor (n = 5), and resistance to pathogens (n = 2). Two articles were reported from Japan and Korea, each. As for GM pigs, 43 articles were found. These articles were classified into three categories: xenotransplantation (n = 36), bioreactor (n = 6), and environmental cleanup (n = 1). Nineteen, seven, six, and five articles were reported from USA, Germany, Korea and Taiwan, respectively. Understanding the recent development of GM animals produced not for food purpose is important for assuring the safety of food.</p>","PeriodicalId":35462,"journal":{"name":"Bulletin of National Institute of Health Sciences","volume":" 130","pages":"50-7"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31127738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Reports on drug-related adverse reactions from manufacturing/distributing pharmaceutical companies or medical institutions/pharmacies are regulated under the Pharmaceutical Affairs Law of Japan, and this system is important for post-marketing safety measures. Although association between the medicine and the adverse event has not been clearly evaluated, and an incidence may be redundantly reported, this information would be useful to roughly grasp the current status of drug-related adverse reactions. In the present study, we analyzed the incidence of drug-induced liver injury by screening the open-source data publicized by the homepage of Pharmaceutical and Medical Devices Agency from 2005 to 2011 fiscal years. Major drug-classes suspected to cause general drug-induced liver injury were antineoplastics, anti-inflammatory agents/common cold drugs, chemotherapeutics including antituberculous drugs, antidiabetics, antiulcers and antiepileptics. In addition, reported cases for fulminant hepatitis were also summarized. We found that antituberculous isoniazid and antineoplastic tegafur-uracil were the top two suspected drugs. These results might deepen understanding of current situations for the drug-induced liver injury in Japan.
生产/分销制药公司或医疗机构/药房的药物相关不良反应报告受日本《药事法》监管,这一制度对于上市后的安全措施非常重要。虽然药物与不良反应之间的关系尚未得到明确的评估,并且可能有重复的发生率报告,但这些信息将有助于大致掌握药物相关不良反应的现状。本研究通过筛选美国药品和医疗器械管理局(Pharmaceutical and Medical Devices Agency)网站2005 - 2011财年公开的开源数据,对药物性肝损伤的发生率进行分析。怀疑引起一般药物性肝损伤的主要药物类别为抗肿瘤药、抗炎药/普通感冒药、化疗药物(包括抗结核药、抗糖尿病药、抗溃疡药和抗癫痫药)。此外,还对报道的暴发性肝炎病例进行了总结。我们发现抗结核异烟肼和抗肿瘤替加福-尿嘧啶是前两种可疑药物。这些结果可能加深对日本药物性肝损伤现状的认识。
{"title":"[Trends in drug-induced liver injury based on reports of adverse reactions to PMDA in Japan].","authors":"Chie Sudo, Keiko Maekawa, Katsunori Segawa, Tadaaki Hanatani, Kimie Sai, Yoshiro Saito","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Reports on drug-related adverse reactions from manufacturing/distributing pharmaceutical companies or medical institutions/pharmacies are regulated under the Pharmaceutical Affairs Law of Japan, and this system is important for post-marketing safety measures. Although association between the medicine and the adverse event has not been clearly evaluated, and an incidence may be redundantly reported, this information would be useful to roughly grasp the current status of drug-related adverse reactions. In the present study, we analyzed the incidence of drug-induced liver injury by screening the open-source data publicized by the homepage of Pharmaceutical and Medical Devices Agency from 2005 to 2011 fiscal years. Major drug-classes suspected to cause general drug-induced liver injury were antineoplastics, anti-inflammatory agents/common cold drugs, chemotherapeutics including antituberculous drugs, antidiabetics, antiulcers and antiepileptics. In addition, reported cases for fulminant hepatitis were also summarized. We found that antituberculous isoniazid and antineoplastic tegafur-uracil were the top two suspected drugs. These results might deepen understanding of current situations for the drug-induced liver injury in Japan.</p>","PeriodicalId":35462,"journal":{"name":"Bulletin of National Institute of Health Sciences","volume":" 130","pages":"66-70"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31126013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Recent activities on the generic products such as the revision of bioequivalence guidelines, the accomplish of the reevaluation of the oral dosage forms approved before 1995, and the action program for promoting comfortable use of generics issued by MHLW in 2007, were summarized in this review. The bioequivalence guidelines established in 1997 were revised in 2012 based on the discussion in a dissolution working group (WG). The WG were consists of the members from pharmaceutical companies, academia and regulators belonging to MHLW, PMDA and NIHS. In the revision, some flexibility in the dissolution test conditions was achieved considering the many experiences. And also the special Q&A for the combination products was published at the same time. The reevaluation of the oral products since 1997 was completed in 2010, and 1361 dissolution specifications for 4133 oral products were noticed. Through the reevaluation the sufficient similarity in the dissolution profiles between the standards product and the generic products was achieved in the Japanese pharmaceutical market. In the action program to promote the share of generics, the special committee was established in the NIHS to assess the scientific papers that reported the quality concern of the commercial generic products and to confirm the target quality of the products by testing. Many generic products were checked their dissolution profile similarities to the reference products in multimedia dissolution tests and the appropriate similarities were shown in most products. In some preparations, the purity tests were performed and the content of the impurity is confirmed to be in the acceptance range.
{"title":"[Trends in the quality evaluation of generic products and bioequivalence guidelines].","authors":"Chikako Yomota","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Recent activities on the generic products such as the revision of bioequivalence guidelines, the accomplish of the reevaluation of the oral dosage forms approved before 1995, and the action program for promoting comfortable use of generics issued by MHLW in 2007, were summarized in this review. The bioequivalence guidelines established in 1997 were revised in 2012 based on the discussion in a dissolution working group (WG). The WG were consists of the members from pharmaceutical companies, academia and regulators belonging to MHLW, PMDA and NIHS. In the revision, some flexibility in the dissolution test conditions was achieved considering the many experiences. And also the special Q&A for the combination products was published at the same time. The reevaluation of the oral products since 1997 was completed in 2010, and 1361 dissolution specifications for 4133 oral products were noticed. Through the reevaluation the sufficient similarity in the dissolution profiles between the standards product and the generic products was achieved in the Japanese pharmaceutical market. In the action program to promote the share of generics, the special committee was established in the NIHS to assess the scientific papers that reported the quality concern of the commercial generic products and to confirm the target quality of the products by testing. Many generic products were checked their dissolution profile similarities to the reference products in multimedia dissolution tests and the appropriate similarities were shown in most products. In some preparations, the purity tests were performed and the content of the impurity is confirmed to be in the acceptance range.</p>","PeriodicalId":35462,"journal":{"name":"Bulletin of National Institute of Health Sciences","volume":" 130","pages":"1-12"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31127266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}