Detecting microorganisms quickly and selectively is extremely important in clinical analysis and in monitoring the quality of food and water. This study details the development of a biosensor that uses electrochemical methods to selectively detect uropathogenic Escherichia coli (E. coli) bacteria in both aqueous and serum samples. The biosensor was developed using a simple and cost-effective method involving reduced graphene oxide (r-GO) with PVA (Polyvinylalcohol) and PEI (Polyethylenimine) through a Sol-Gel spin coating process. The numerous NH 2 groups on the PVA and PEI were used to functionalize the biosensor's surface. To increase the specificity of the detection process, amide bonds were formed on the electrode surface using anti-fimbrial E. coli antibodies. The redox mediator prevents the formation of immunological complex and it enhances the transmission of electrons from the developed PVA/rGO/PEI-modified layer to detect E. coli. The development of an electrochemical test for Escherichia coli illustrated the efficacy of these biosensors. Using only 5 µL of the sample, it was discovered that these biosensors had a broad dynamic range (915-2.5×10 7 CFU/mL) and low limits of detection (285 CFU/mL). Moreover, the biosensor performed well in aqueous, serum, and urine media, making it potentially useful for the clinical diagnosis of pathogenic diseases. This study highlights the potential of these biosensors for real-world, point-of-care applications.
{"title":"Electrochemical Detection of Uropathogenic Escherichia Coli Using PVA/R-GO/PEI Modified Nanocomposite Electrode","authors":"P. P.","doi":"10.30919/es903","DOIUrl":"https://doi.org/10.30919/es903","url":null,"abstract":"Detecting microorganisms quickly and selectively is extremely important in clinical analysis and in monitoring the quality of food and water. This study details the development of a biosensor that uses electrochemical methods to selectively detect uropathogenic Escherichia coli (E. coli) bacteria in both aqueous and serum samples. The biosensor was developed using a simple and cost-effective method involving reduced graphene oxide (r-GO) with PVA (Polyvinylalcohol) and PEI (Polyethylenimine) through a Sol-Gel spin coating process. The numerous NH 2 groups on the PVA and PEI were used to functionalize the biosensor's surface. To increase the specificity of the detection process, amide bonds were formed on the electrode surface using anti-fimbrial E. coli antibodies. The redox mediator prevents the formation of immunological complex and it enhances the transmission of electrons from the developed PVA/rGO/PEI-modified layer to detect E. coli. The development of an electrochemical test for Escherichia coli illustrated the efficacy of these biosensors. Using only 5 µL of the sample, it was discovered that these biosensors had a broad dynamic range (915-2.5×10 7 CFU/mL) and low limits of detection (285 CFU/mL). Moreover, the biosensor performed well in aqueous, serum, and urine media, making it potentially useful for the clinical diagnosis of pathogenic diseases. This study highlights the potential of these biosensors for real-world, point-of-care applications.","PeriodicalId":36059,"journal":{"name":"Engineered Science","volume":"181 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75383461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Melina Kloster, Adriele A. de Almeida, D. Muraca, N. Marcovich, M. Mosiewicki
{"title":"Chitosan-based Magnetic Particles as Adsorbents for Anionic Contaminants","authors":"Melina Kloster, Adriele A. de Almeida, D. Muraca, N. Marcovich, M. Mosiewicki","doi":"10.30919/es8d851","DOIUrl":"https://doi.org/10.30919/es8d851","url":null,"abstract":"","PeriodicalId":36059,"journal":{"name":"Engineered Science","volume":"54 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86728109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Riccio, A. Sellitto, D. Borrelli, R. Sansone, A. Caraviello, Ugo Riccio, A. Torluccio, Luca Pacini, R. Mohr
{"title":"On the Development of a Passive Shape Memory Alloy- Based Cooling System – Part I: Design and Implementation","authors":"A. Riccio, A. Sellitto, D. Borrelli, R. Sansone, A. Caraviello, Ugo Riccio, A. Torluccio, Luca Pacini, R. Mohr","doi":"10.30919/es927","DOIUrl":"https://doi.org/10.30919/es927","url":null,"abstract":"","PeriodicalId":36059,"journal":{"name":"Engineered Science","volume":"31 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88945945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Novel TOPSIS Linear Programming Model Based on the Taguchi Method for Solving the Multi-Response Optimization Problems: A Case Study of a Fish Scale Scraping Machine","authors":"Anucha Sriburum, Narong Wichapa, Wanrop Khanthirat","doi":"10.30919/es882","DOIUrl":"https://doi.org/10.30919/es882","url":null,"abstract":"","PeriodicalId":36059,"journal":{"name":"Engineered Science","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79549467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hafsa Bahaar, S. Reddy, B. S. Kumar, Prashanthi K, Ananda Murthy H.C.
: A new nanocarrier was developed to address the debilitating side effects associated with cancer treatment, specifically for delivering Sorafenib (SF). This nanocarrier utilises biodegradable polymers, which present a promising approach to anti-cancer therapy by enabling controlled drug release and reduced toxicity. The design of the nanocarrier includes Fe 3 O 4 nanoparticles, Sodium alginate, Lignosulphonic acid, Polyethylene glycol, SF drug, and a MgAl layered double hydroxide coating. The nanocarrier was extensively characterised using various techniques, including FT-IR, TGA, and FESEM. Notably, the IONP nanocarrier demonstrated remarkable superiority in the controlled release of SF compared to other variations. The chemical interactions among the components of the nanocarrier significantly contributed to its enhanced stability, as evidenced by thermogravimetric analysis. Furthermore, XRD analysis
{"title":"Modified Layered Double Hydroxide – PEG Magneto-Sensitive Hydrogels with Suitable Ligno-Alginate Green Polymer Composite for Prolonged Drug Delivery Applications","authors":"Hafsa Bahaar, S. Reddy, B. S. Kumar, Prashanthi K, Ananda Murthy H.C.","doi":"10.30919/es914","DOIUrl":"https://doi.org/10.30919/es914","url":null,"abstract":": A new nanocarrier was developed to address the debilitating side effects associated with cancer treatment, specifically for delivering Sorafenib (SF). This nanocarrier utilises biodegradable polymers, which present a promising approach to anti-cancer therapy by enabling controlled drug release and reduced toxicity. The design of the nanocarrier includes Fe 3 O 4 nanoparticles, Sodium alginate, Lignosulphonic acid, Polyethylene glycol, SF drug, and a MgAl layered double hydroxide coating. The nanocarrier was extensively characterised using various techniques, including FT-IR, TGA, and FESEM. Notably, the IONP nanocarrier demonstrated remarkable superiority in the controlled release of SF compared to other variations. The chemical interactions among the components of the nanocarrier significantly contributed to its enhanced stability, as evidenced by thermogravimetric analysis. Furthermore, XRD analysis","PeriodicalId":36059,"journal":{"name":"Engineered Science","volume":"45 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89231063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Ag and Cu decorated-clay nanostructures showed excellent antimicrobial activity against pathogenic gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria, respectively with the inhibition zones of 10.5 mm, 25 mm and 13.5 mm.
{"title":"Anti-Bacterial Activity of Kalzhat Clay Functionalized with Ag and Cu Nanoparticles","authors":"Sana Kabdrakhmanova, Joshy K.S, Aiswarya Sathian, Kadiran Aryp, Kydyrmolla Akatan, Esbol Shaimardan, Madiar Beisebekov, Temirkhanova Gulden, Ainur Kabdrakhmanova, Aida Maussumbayeva, Tomy Muringayil Joseph, Sabu Thomas","doi":"10.30919/es972","DOIUrl":"https://doi.org/10.30919/es972","url":null,"abstract":"The Ag and Cu decorated-clay nanostructures showed excellent antimicrobial activity against pathogenic gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria, respectively with the inhibition zones of 10.5 mm, 25 mm and 13.5 mm.","PeriodicalId":36059,"journal":{"name":"Engineered Science","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135953339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ti-6Al-4V is a popular material in the biomedical industry for orthopedic prosthetics production. Moreover, this alloy is well-processable via additive manufacturing (AM) technologies, allowing to tailor the design of the implant according to the specific needs of each individual patient. Nevertheless, AM technologies deploy metal powders, resulting in very rough topologies due to partially melted/adhered residual particles on the surfaces generated. Although this promotes osseointegration, corrosion-induced particle dropping can result in a severe inflammatory response in the patient. To overcome this, a pickling treatment was specifically developed and optimized to decrease the concentration of residual particles, without compromising surface roughness. Specimens produced via laser-and electron beam-powder bed fusion (PBF) were investigated. Three different surface finishing conditions (AM-generated, polished and pickled) were also compared via potentiostatic polarization tests. The specimens that underwent the pickling process proved to achieve lower current densities for long term exposures in simulated body fluid (SBF). Another critical phenomenon that occurs in prosthetics is the release of metal ions over time. To assess this issue, multiple electrochemical tests (potentiostatic polarization, electrochemical impedance spectroscopy) were deployed to assess the effect of the different PBF technologies and heat treatments on the ions release rate of Ti-6Al-4V in SBF.
{"title":"Improving the Corrosion Performance of LPBF- and EBM-Processed Ti-6Al-4V by Chemical Pickling","authors":"Alessandro Carrozza, Marina Cabrini, Sergio Lorenzi, Mariangela Lombardi, Tommas Pastore","doi":"10.30919/es985","DOIUrl":"https://doi.org/10.30919/es985","url":null,"abstract":"Ti-6Al-4V is a popular material in the biomedical industry for orthopedic prosthetics production. Moreover, this alloy is well-processable via additive manufacturing (AM) technologies, allowing to tailor the design of the implant according to the specific needs of each individual patient. Nevertheless, AM technologies deploy metal powders, resulting in very rough topologies due to partially melted/adhered residual particles on the surfaces generated. Although this promotes osseointegration, corrosion-induced particle dropping can result in a severe inflammatory response in the patient. To overcome this, a pickling treatment was specifically developed and optimized to decrease the concentration of residual particles, without compromising surface roughness. Specimens produced via laser-and electron beam-powder bed fusion (PBF) were investigated. Three different surface finishing conditions (AM-generated, polished and pickled) were also compared via potentiostatic polarization tests. The specimens that underwent the pickling process proved to achieve lower current densities for long term exposures in simulated body fluid (SBF). Another critical phenomenon that occurs in prosthetics is the release of metal ions over time. To assess this issue, multiple electrochemical tests (potentiostatic polarization, electrochemical impedance spectroscopy) were deployed to assess the effect of the different PBF technologies and heat treatments on the ions release rate of Ti-6Al-4V in SBF.","PeriodicalId":36059,"journal":{"name":"Engineered Science","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136306084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}