首页 > 最新文献

中国图象图形学报最新文献

英文 中文
ImECGnet: Cardiovascular Disease Classification from Image-Based ECG Data Using a Multibranch Convolutional Neural Network ImECGnet:使用多分支卷积神经网络从基于图像的心电数据中分类心血管疾病
Q3 Computer Science Pub Date : 2023-03-01 DOI: 10.18178/joig.11.1.9-14
Amir Ghahremani, C. Lofi
Reliable Cardiovascular Disease (CVD) classification performed by a smart system can assist medical doctors in recognizing heart illnesses in patients more efficiently and effectively. Electrocardiogram (ECG) signals are an important diagnostic tool as they are already available early in the patients’ health diagnosis process and contain valuable indicators for various CVDs. Most ECG processing methods represent ECG data as a time series, often as a matrix with each row containing the measurements of a sensor lead; and/or the transforms of such time series like wavelet power spectrums. While methods processing such time-series data have been shown to work well in benchmarks, they are still highly dependent on factors like input noise and sequence length, and cannot always correlate lead data from different sensors well. In this paper, we propose to represent ECG signals incorporating all lead data plotted as a single image, an approach not yet explored by literature. We will show that such an image representation combined with our newly proposed convolutional neural network specifically designed for CVD classification can overcome the aforementioned shortcomings. The proposed (Convolutional Neural Network) CNN is designed to extract features representing both the proportional relationships of different leads to each other and the characteristics of each lead separately. Empirical validation on the publicly available PTB, MIT-BIH, and St.-Petersburg benchmark databases shows that the proposed method outperforms time seriesbased state-of-the-art approaches, yielding classification accuracy of 97.91%, 99.62%, and 98.70%, respectively.
通过智能系统进行可靠的心血管疾病(CVD)分类,可以帮助医生更有效地识别患者的心脏病。心电图(ECG)信号是一种重要的诊断工具,因为它在患者健康诊断过程的早期就可以获得,并且包含各种心血管疾病的有价值的指标。大多数心电处理方法将心电数据表示为时间序列,通常作为矩阵,每行包含传感器引线的测量值;或者时间序列的变换比如小波功率谱。虽然处理此类时间序列数据的方法在基准测试中表现良好,但它们仍然高度依赖于输入噪声和序列长度等因素,并且不能总是将来自不同传感器的引线数据很好地关联起来。在本文中,我们建议将合并所有导联数据的心电信号表示为单个图像,这是一种尚未被文献探索的方法。我们将证明这种图像表示与我们新提出的专门为CVD分类设计的卷积神经网络相结合可以克服上述缺点。本文提出的卷积神经网络(Convolutional Neural Network) CNN旨在提取既代表不同引线之间的比例关系的特征,又分别代表每个引线的特征。在公开可用的PTB、MIT-BIH和st . petersburg基准数据库上的实证验证表明,所提出的方法优于基于时间序列的最先进方法,分类准确率分别为97.91%、99.62%和98.70%。
{"title":"ImECGnet: Cardiovascular Disease Classification from Image-Based ECG Data Using a Multibranch Convolutional Neural Network","authors":"Amir Ghahremani, C. Lofi","doi":"10.18178/joig.11.1.9-14","DOIUrl":"https://doi.org/10.18178/joig.11.1.9-14","url":null,"abstract":"Reliable Cardiovascular Disease (CVD) classification performed by a smart system can assist medical doctors in recognizing heart illnesses in patients more efficiently and effectively. Electrocardiogram (ECG) signals are an important diagnostic tool as they are already available early in the patients’ health diagnosis process and contain valuable indicators for various CVDs. Most ECG processing methods represent ECG data as a time series, often as a matrix with each row containing the measurements of a sensor lead; and/or the transforms of such time series like wavelet power spectrums. While methods processing such time-series data have been shown to work well in benchmarks, they are still highly dependent on factors like input noise and sequence length, and cannot always correlate lead data from different sensors well. In this paper, we propose to represent ECG signals incorporating all lead data plotted as a single image, an approach not yet explored by literature. We will show that such an image representation combined with our newly proposed convolutional neural network specifically designed for CVD classification can overcome the aforementioned shortcomings. The proposed (Convolutional Neural Network) CNN is designed to extract features representing both the proportional relationships of different leads to each other and the characteristics of each lead separately. Empirical validation on the publicly available PTB, MIT-BIH, and St.-Petersburg benchmark databases shows that the proposed method outperforms time seriesbased state-of-the-art approaches, yielding classification accuracy of 97.91%, 99.62%, and 98.70%, respectively.","PeriodicalId":36336,"journal":{"name":"中国图象图形学报","volume":"58 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87574480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Intelligent visualization and visual analytics 智能可视化和可视化分析
Q3 Computer Science Pub Date : 2023-01-01 DOI: 10.11834/jig.230034
Tao Jun, Zhang Yu, Chen Qing, Liu Can, Siming Chen, Xiaoru Yuan
{"title":"Intelligent visualization and visual analytics","authors":"Tao Jun, Zhang Yu, Chen Qing, Liu Can, Siming Chen, Xiaoru Yuan","doi":"10.11834/jig.230034","DOIUrl":"https://doi.org/10.11834/jig.230034","url":null,"abstract":"","PeriodicalId":36336,"journal":{"name":"中国图象图形学报","volume":"156 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77482578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Review of optimization methods for supervised deep learning 有监督深度学习的优化方法综述
Q3 Computer Science Pub Date : 2023-01-01 DOI: 10.11834/jig.211139
Lin Jiang, Yifeng Zheng, Chen Che, Li Guohe, Wenjie Zhang
: Deep learning technique has been developing intensively in big data era. However , its capability is still chal⁃ lenged for the design of network structure and parameter setting. Therefore , it is essential to improve the performance of the model and optimize the complexity of the model. Machine learning can be segmented into five categories in terms of learn⁃ ing methods : 1 ) supervised learning , 2 ) unsupervised learning , 3 ) semi - supervised learning , 4 ) deep learning , and 5 ) reinforcement learning. These machine learning techniques are required to be incorporated in. To improve its fitting and
深度学习技术在大数据时代得到了深入的发展。但在网络结构设计和参数设置方面,其性能仍然受到挑战。因此,提高模型的性能和优化模型的复杂度是至关重要的。机器学习可以根据学习方法分为五类:1)监督学习,2)无监督学习,3)半监督学习,4)深度学习,5)强化学习。这些机器学习技术需要被纳入。以提高其适用性和
{"title":"Review of optimization methods for supervised deep learning","authors":"Lin Jiang, Yifeng Zheng, Chen Che, Li Guohe, Wenjie Zhang","doi":"10.11834/jig.211139","DOIUrl":"https://doi.org/10.11834/jig.211139","url":null,"abstract":": Deep learning technique has been developing intensively in big data era. However , its capability is still chal⁃ lenged for the design of network structure and parameter setting. Therefore , it is essential to improve the performance of the model and optimize the complexity of the model. Machine learning can be segmented into five categories in terms of learn⁃ ing methods : 1 ) supervised learning , 2 ) unsupervised learning , 3 ) semi - supervised learning , 4 ) deep learning , and 5 ) reinforcement learning. These machine learning techniques are required to be incorporated in. To improve its fitting and","PeriodicalId":36336,"journal":{"name":"中国图象图形学报","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80080636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temporal series features extraction based on Bi-ConvLSTM of Alzheimer’s disease pridiction CTISS model 基于Bi-ConvLSTM的阿尔茨海默病预测CTISS模型时间序列特征提取
Q3 Computer Science Pub Date : 2023-01-01 DOI: 10.11834/jig.211186
Hong Xin, Kaifeng Huang, Chenhui Yang
{"title":"Temporal series features extraction based on Bi-ConvLSTM of Alzheimer’s disease pridiction CTISS model","authors":"Hong Xin, Kaifeng Huang, Chenhui Yang","doi":"10.11834/jig.211186","DOIUrl":"https://doi.org/10.11834/jig.211186","url":null,"abstract":"","PeriodicalId":36336,"journal":{"name":"中国图象图形学报","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81878764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Review on optical visual sensor technology 光学视觉传感器技术综述
Q3 Computer Science Pub Date : 2023-01-01 DOI: 10.11834/jig.230039
Xu Jiangtao, Wang Xinyang, Wang Tingdong, Chen Xin, Song Zongxi, Lei Hao, Liu Gang, Wen Desheng
{"title":"Review on optical visual sensor technology","authors":"Xu Jiangtao, Wang Xinyang, Wang Tingdong, Chen Xin, Song Zongxi, Lei Hao, Liu Gang, Wen Desheng","doi":"10.11834/jig.230039","DOIUrl":"https://doi.org/10.11834/jig.230039","url":null,"abstract":"","PeriodicalId":36336,"journal":{"name":"中国图象图形学报","volume":"162 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73306483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of forest visualization and forest fire simulation technology research 森林可视化与森林火灾模拟技术研究综述
Q3 Computer Science Pub Date : 2023-01-01 DOI: 10.11834/jig.230016
Huai Yongjian, Qingkuo Meng, Tianrong Ma, Haifeng Xu, Zhao Xi, Mingzhi Cheng, Xinyuan Huang
{"title":"A review of forest visualization and forest fire simulation technology research","authors":"Huai Yongjian, Qingkuo Meng, Tianrong Ma, Haifeng Xu, Zhao Xi, Mingzhi Cheng, Xinyuan Huang","doi":"10.11834/jig.230016","DOIUrl":"https://doi.org/10.11834/jig.230016","url":null,"abstract":"","PeriodicalId":36336,"journal":{"name":"中国图象图形学报","volume":"32 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78676638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AsymcNet:a document images-relevant asymmetric geometry correction network 一个文档图像相关的非对称几何校正网络
Q3 Computer Science Pub Date : 2023-01-01 DOI: 10.11834/jig.220426
Qin Hai, Li Yijie, Q. Liang, Yaonan Wang
{"title":"AsymcNet:a document images-relevant asymmetric geometry correction network","authors":"Qin Hai, Li Yijie, Q. Liang, Yaonan Wang","doi":"10.11834/jig.220426","DOIUrl":"https://doi.org/10.11834/jig.220426","url":null,"abstract":"","PeriodicalId":36336,"journal":{"name":"中国图象图形学报","volume":"48 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88266511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pre analysis of difficulty in renal tumor enucleation surgery based on deep learning and image automation evaluation 基于深度学习和图像自动化评价的肾肿瘤去核手术难度预分析
Q3 Computer Science Pub Date : 2023-01-01 DOI: 10.11834/jig.220375
Yunpeng Liu, Tielin Wu, Cai Wenli, Renfang Wang, Dechao Sun, Kaifeng Gan, Li Jin, Jin Ran, Qiu Hong, Huixia Xu
{"title":"Pre analysis of difficulty in renal tumor enucleation surgery based on deep learning and image automation evaluation","authors":"Yunpeng Liu, Tielin Wu, Cai Wenli, Renfang Wang, Dechao Sun, Kaifeng Gan, Li Jin, Jin Ran, Qiu Hong, Huixia Xu","doi":"10.11834/jig.220375","DOIUrl":"https://doi.org/10.11834/jig.220375","url":null,"abstract":"","PeriodicalId":36336,"journal":{"name":"中国图象图形学报","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89224199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Video anomaly detection by fusing self-attention and autoencoder 融合自关注和自编码器的视频异常检测
Q3 Computer Science Pub Date : 2023-01-01 DOI: 10.11834/jig.211147
Jiafei Liang, Li Ting, Yang Jiaqi, Li Yanan, Zhiwen Fang, Yang Feng
: Objective Anomaly detection has been developing in video surveillance domain. Video anomaly detection is
客观异常检测是视频监控领域的发展方向。视频异常检测
{"title":"Video anomaly detection by fusing self-attention and autoencoder","authors":"Jiafei Liang, Li Ting, Yang Jiaqi, Li Yanan, Zhiwen Fang, Yang Feng","doi":"10.11834/jig.211147","DOIUrl":"https://doi.org/10.11834/jig.211147","url":null,"abstract":": Objective Anomaly detection has been developing in video surveillance domain. Video anomaly detection is","PeriodicalId":36336,"journal":{"name":"中国图象图形学报","volume":"136 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79602862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on visual analysis methods of bird satellite tracking data: a case study analysis for Nipponia nippon 鸟类卫星跟踪数据的可视化分析方法研究——以日本鸟为例
Q3 Computer Science Pub Date : 2023-01-01 DOI: 10.11834/jig.220403
Xinyue Li, Jiang Xian, Weiqun Cao, Dongping Liu
{"title":"Research on visual analysis methods of bird satellite tracking data: a case study analysis for Nipponia nippon","authors":"Xinyue Li, Jiang Xian, Weiqun Cao, Dongping Liu","doi":"10.11834/jig.220403","DOIUrl":"https://doi.org/10.11834/jig.220403","url":null,"abstract":"","PeriodicalId":36336,"journal":{"name":"中国图象图形学报","volume":"23 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85350443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
中国图象图形学报
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1