Background and aims
Hepatic ischemia-reperfusion injury (HIRI) is a major contributor to liver dysfunction and failure, particularly in the context of liver transplantation. Its pathogenesis is primarily driven by ferroptosis, oxidative stress, and mitochondrial dysfunction. Given the interplay among these mechanisms through redox imbalance and disrupted energy metabolism, nicotinic acid (NA)—recognized for its antioxidative and metabolic regulatory properties—emerges as a promising therapeutic candidate. This study aims to investigate the protective effects of NA on HIRI and elucidate its underlying mechanisms.
Methods
An HIRI model in mice and a hypoxia/reoxygenation (H/R) model in primary hepatocytes were established to evaluate the effects of NA treatment on oxidative stress. NA was administered prior to model induction. N-acetylcysteine (NAC) was used as a comparator. Comprehensive assessments of ferroptosis, oxidative stress, mitophagy, and mitochondrial biogenesis markers were conducted using Western blotting, immunohistochemistry, immunofluorescence, and biochemical assays.
Results
NA pretreatment reduced serum alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase (LDH) levels, suppressed inflammation by decreasing neutrophil infiltration and macrophage activation, and mitigated oxidative stress by lowering reactive oxygen species (ROS) and malondialdehyde (MDA) levels. It enhanced antioxidant defenses, inhibited ferroptosis, and improved mitochondrial health through increased mitophagy, mitochondrial biogenesis, and mitochondrial permeability transition pore (mPTP) stabilization, leading to enhanced ATP production and mitochondrial function in HIRI.
Conclusions
NA improves mitochondrial function by promoting mitophagy and mitochondrial biogenesis, which reduces ferroptosis and oxidative stress, thereby alleviating HIRI.
扫码关注我们
求助内容:
应助结果提醒方式:
