Pub Date : 2022-01-01DOI: 10.1007/978-3-030-91311-3_3
Theresa L Whiteside
Tumor-infiltrating lymphocytes (TIL) are an important component of the tumor environment. Their role in tumor growth and progression has been debated for decades. Today, emphasis has shifted to beneficial effects of TIL for the host and to therapies optimizing the benefits by reducing immune suppression in the tumor microenvironment. Evidence indicates that when TILs are present in the tumor as dense aggregates of activated immune cells, tumor prognosis and responses to therapy are favorable. Gene signatures and protein profiling of TIL at the population and single-cell levels provide clues not only about their phenotype and numbers but also about TIL potential functions in the tumor. Correlations of the TIL data with clinicopathological tumor characteristics, clinical outcome, and patients' survival indicate that TILs exert influence on the disease progression, especially in colorectal carcinomas and breast cancer. At the same time, the recognition that TIL signatures vary with time and cancer progression has initiated investigations of TIL as potential prognostic biomarkers. Multiple mechanisms are utilized by tumors to subvert the host immune system. The balance between pro- and antitumor responses of TIL largely depends on the tumor microenvironment, which is unique in each cancer patient. This balance is orchestrated by the tumor and thus is shifted toward the promotion of tumor growth. Changes occurring in TIL during tumor progression appear to serve as a measure of tumor aggressiveness and potentially provide a key to selecting therapeutic strategies and inform about prognosis.
{"title":"Tumor-Infiltrating Lymphocytes and Their Role in Solid Tumor Progression.","authors":"Theresa L Whiteside","doi":"10.1007/978-3-030-91311-3_3","DOIUrl":"10.1007/978-3-030-91311-3_3","url":null,"abstract":"<p><p>Tumor-infiltrating lymphocytes (TIL) are an important component of the tumor environment. Their role in tumor growth and progression has been debated for decades. Today, emphasis has shifted to beneficial effects of TIL for the host and to therapies optimizing the benefits by reducing immune suppression in the tumor microenvironment. Evidence indicates that when TILs are present in the tumor as dense aggregates of activated immune cells, tumor prognosis and responses to therapy are favorable. Gene signatures and protein profiling of TIL at the population and single-cell levels provide clues not only about their phenotype and numbers but also about TIL potential functions in the tumor. Correlations of the TIL data with clinicopathological tumor characteristics, clinical outcome, and patients' survival indicate that TILs exert influence on the disease progression, especially in colorectal carcinomas and breast cancer. At the same time, the recognition that TIL signatures vary with time and cancer progression has initiated investigations of TIL as potential prognostic biomarkers. Multiple mechanisms are utilized by tumors to subvert the host immune system. The balance between pro- and antitumor responses of TIL largely depends on the tumor microenvironment, which is unique in each cancer patient. This balance is orchestrated by the tumor and thus is shifted toward the promotion of tumor growth. Changes occurring in TIL during tumor progression appear to serve as a measure of tumor aggressiveness and potentially provide a key to selecting therapeutic strategies and inform about prognosis.</p>","PeriodicalId":36906,"journal":{"name":"Experientia supplementum (2012)","volume":"113 ","pages":"89-106"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9113058/pdf/nihms-1795786.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39924637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.1007/978-3-030-91311-3_4
Izabela Szulc-Kielbik, Michal Kielbik
Tumor microenvironment (TME) is a complex and constantly evolving entity that consists not only of cancer cells, but also of resident host cells and immune-infiltrating cells, among which macrophages are significant components, due to their diversity of functions through which they can influence the immune response against tumor cells. Macrophages present in tumor environment are termed as tumor-associated macrophages (TAMs). They are strongly plastic cells, and depending on the TME stimuli (i.e., cytokines, chemokines), TAMs polarize to antitumoral (M1-like TAMs) or protumoral (M2-like TAMs) phenotype. Both types of TAMs differ in the surface receptors' expression, activation of intracellular signaling pathways, and ability of production and various metabolites release. At the early stage of tumor formation, TAMs are M1-like phenotype, and they are able to eliminate tumor cells, i.e., by reactive oxygen species formation or by presentation of cancer antigens to other effector immune cells. However, during tumor progression, TAMs M2-like phenotype is dominating. They mainly contribute to angiogenesis, stromal remodeling, enhancement of tumor cells migration and invasion, and immunosuppression. This wide variety of TAMs' functions makes them an excellent subject for use in developing antitumor therapies which mainly is based on three strategies: TAMs' elimination, reprograming, or recruitment inhibition.
{"title":"Tumor-Associated Macrophages: Reasons to Be Cheerful, Reasons to Be Fearful.","authors":"Izabela Szulc-Kielbik, Michal Kielbik","doi":"10.1007/978-3-030-91311-3_4","DOIUrl":"https://doi.org/10.1007/978-3-030-91311-3_4","url":null,"abstract":"<p><p>Tumor microenvironment (TME) is a complex and constantly evolving entity that consists not only of cancer cells, but also of resident host cells and immune-infiltrating cells, among which macrophages are significant components, due to their diversity of functions through which they can influence the immune response against tumor cells. Macrophages present in tumor environment are termed as tumor-associated macrophages (TAMs). They are strongly plastic cells, and depending on the TME stimuli (i.e., cytokines, chemokines), TAMs polarize to antitumoral (M1-like TAMs) or protumoral (M2-like TAMs) phenotype. Both types of TAMs differ in the surface receptors' expression, activation of intracellular signaling pathways, and ability of production and various metabolites release. At the early stage of tumor formation, TAMs are M1-like phenotype, and they are able to eliminate tumor cells, i.e., by reactive oxygen species formation or by presentation of cancer antigens to other effector immune cells. However, during tumor progression, TAMs M2-like phenotype is dominating. They mainly contribute to angiogenesis, stromal remodeling, enhancement of tumor cells migration and invasion, and immunosuppression. This wide variety of TAMs' functions makes them an excellent subject for use in developing antitumor therapies which mainly is based on three strategies: TAMs' elimination, reprograming, or recruitment inhibition.</p>","PeriodicalId":36906,"journal":{"name":"Experientia supplementum (2012)","volume":"113 ","pages":"107-140"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39924640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.1007/978-3-030-91311-3_10
Grazia Graziani, Lucia Lisi, Lucio Tentori, Pierluigi Navarra
The immune checkpoint cytotoxic T lymphocyte-associated antigen 4 (CTLA-4 or CD152) is a negative regulator of T-cell-mediated immune responses which plays a critical role in suppressing autoimmunity and maintaining immune homeostasis. Because of its inhibitory activity on T cells, CTLA-4 has been investigated as a drug target to induce immunostimulation, blocking the interaction with its ligands. The antitumor effects mediated by CTLA-4 blockade have been attributed to a sustained active immune response against cancer cells, due to the release of a brake on T cell activation. Ipilimumab (Yervoy, Bristol-Myers Squibb) is a fully human anti-CTLA-4 IgG1κ monoclonal antibody (mAb) that represents the first immune checkpoint inhibitor approved as monotherapy by FDA and EMA in 2011 for the treatment of unresectable/metastatic melanoma. In 2015, FDA also granted approval to ipilimumab monotherapy as adjuvant treatment of stage III melanoma to reduce the risk of tumour recurrence. The subsequent approved indications of ipilimumab for metastatic melanoma, regardless of BRAF mutational status, and other advanced/metastatic solid tumours always involve its use in association with the anti-programmed cell death protein 1 (PD-1) mAb nivolumab. Currently, ipilimumab is evaluated in ongoing clinical trials for refractory/advanced solid tumours mainly in combination with additional immunostimulating agents.
{"title":"Monoclonal Antibodies to CTLA-4 with Focus on Ipilimumab.","authors":"Grazia Graziani, Lucia Lisi, Lucio Tentori, Pierluigi Navarra","doi":"10.1007/978-3-030-91311-3_10","DOIUrl":"https://doi.org/10.1007/978-3-030-91311-3_10","url":null,"abstract":"<p><p>The immune checkpoint cytotoxic T lymphocyte-associated antigen 4 (CTLA-4 or CD152) is a negative regulator of T-cell-mediated immune responses which plays a critical role in suppressing autoimmunity and maintaining immune homeostasis. Because of its inhibitory activity on T cells, CTLA-4 has been investigated as a drug target to induce immunostimulation, blocking the interaction with its ligands. The antitumor effects mediated by CTLA-4 blockade have been attributed to a sustained active immune response against cancer cells, due to the release of a brake on T cell activation. Ipilimumab (Yervoy, Bristol-Myers Squibb) is a fully human anti-CTLA-4 IgG1κ monoclonal antibody (mAb) that represents the first immune checkpoint inhibitor approved as monotherapy by FDA and EMA in 2011 for the treatment of unresectable/metastatic melanoma. In 2015, FDA also granted approval to ipilimumab monotherapy as adjuvant treatment of stage III melanoma to reduce the risk of tumour recurrence. The subsequent approved indications of ipilimumab for metastatic melanoma, regardless of BRAF mutational status, and other advanced/metastatic solid tumours always involve its use in association with the anti-programmed cell death protein 1 (PD-1) mAb nivolumab. Currently, ipilimumab is evaluated in ongoing clinical trials for refractory/advanced solid tumours mainly in combination with additional immunostimulating agents.</p>","PeriodicalId":36906,"journal":{"name":"Experientia supplementum (2012)","volume":"113 ","pages":"295-350"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39621677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Analytical methods developed for studying immunoglobulin glycosylation rely heavily on software tailored for this purpose. Many of these tools are now used in high-throughput settings, especially for the glycomic characterization of IgG. A collection of these tools, and the databases they rely on, are presented in this chapter. Specific applications are detailed in examples of immunoglobulin glycomics and glycoproteomics data processing workflows. The results obtained in the glycoproteomics workflow are emphasized with the use of dedicated visualizing tools. These tools enable the user to highlight glycan properties and their differential expression.
{"title":"Bioinformatics in Immunoglobulin Glycosylation Analysis.","authors":"Frédérique Lisacek, Kathirvel Alagesan, Catherine Hayes, Steffen Lippold, Noortje de Haan","doi":"10.1007/978-3-030-76912-3_6","DOIUrl":"https://doi.org/10.1007/978-3-030-76912-3_6","url":null,"abstract":"<p><p>Analytical methods developed for studying immunoglobulin glycosylation rely heavily on software tailored for this purpose. Many of these tools are now used in high-throughput settings, especially for the glycomic characterization of IgG. A collection of these tools, and the databases they rely on, are presented in this chapter. Specific applications are detailed in examples of immunoglobulin glycomics and glycoproteomics data processing workflows. The results obtained in the glycoproteomics workflow are emphasized with the use of dedicated visualizing tools. These tools enable the user to highlight glycan properties and their differential expression.</p>","PeriodicalId":36906,"journal":{"name":"Experientia supplementum (2012)","volume":"112 ","pages":"205-233"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39549033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mass spectrometry and its hyphenated techniques enabled by the improvements in liquid chromatography, capillary electrophoresis, novel ionization, and fragmentation modes are truly a cornerstone of robust and reliable protein glycosylation analysis. Boost in immunoglobulin G (IgG) glycan and glycopeptide profiling demands for both applied biomedical and research applications has brought many new advances in the field in terms of technical innovations, sample preparation, improved throughput, and confidence in glycan structural characterization. This chapter summarizes mass spectrometry basics, focusing on IgG and monoclonal antibody N-glycosylation analysis on several complexity levels. Different approaches, including antibody enrichment, glycan release, labeling, and glycopeptide preparation and purification, are covered and illustrated with recent breakthroughs and examples from the literature omitting excessive theoretical frameworks. Finally, selected highly popular methodologies in IgG glycoanalytics such as liquid chromatography-mass spectrometry and matrix-assisted laser desorption ionization are discussed more thoroughly yet in simple terms making this text a practical starting point either for the beginner in the field or an experienced clinician trying to make sense out of the IgG glycomic or glycoproteomic dataset.
{"title":"Mass Spectrometry-Based Methods for Immunoglobulin G N-Glycosylation Analysis.","authors":"Siniša Habazin, Jerko Štambuk, Jelena Šimunović, Toma Keser, Genadij Razdorov, Mislav Novokmet","doi":"10.1007/978-3-030-76912-3_3","DOIUrl":"https://doi.org/10.1007/978-3-030-76912-3_3","url":null,"abstract":"<p><p>Mass spectrometry and its hyphenated techniques enabled by the improvements in liquid chromatography, capillary electrophoresis, novel ionization, and fragmentation modes are truly a cornerstone of robust and reliable protein glycosylation analysis. Boost in immunoglobulin G (IgG) glycan and glycopeptide profiling demands for both applied biomedical and research applications has brought many new advances in the field in terms of technical innovations, sample preparation, improved throughput, and confidence in glycan structural characterization. This chapter summarizes mass spectrometry basics, focusing on IgG and monoclonal antibody N-glycosylation analysis on several complexity levels. Different approaches, including antibody enrichment, glycan release, labeling, and glycopeptide preparation and purification, are covered and illustrated with recent breakthroughs and examples from the literature omitting excessive theoretical frameworks. Finally, selected highly popular methodologies in IgG glycoanalytics such as liquid chromatography-mass spectrometry and matrix-assisted laser desorption ionization are discussed more thoroughly yet in simple terms making this text a practical starting point either for the beginner in the field or an experienced clinician trying to make sense out of the IgG glycomic or glycoproteomic dataset.</p>","PeriodicalId":36906,"journal":{"name":"Experientia supplementum (2012)","volume":"112 ","pages":"73-135"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39549031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.1007/978-3-030-76912-3_9
Marija Klasić, Vlatka Zoldoš
Alternative glycosylation of immunoglobulin G (IgG) affects its effector functions during the immune response. IgG glycosylation is altered in many diseases, but also during a healthy life of an individual. Currently, there is limited knowledge of factors that alter IgG glycosylation in the healthy state and factors involved in specific IgG glycosylation patterns associated with pathophysiology. Genetic background plays an important role, but epigenetic mechanisms also contribute to the alteration of IgG glycosylation patterns in healthy life and in disease. It is known that the expression of many glycosyltransferases is regulated by DNA methylation and by microRNA (miRNA) molecules, but the involvement of other epigenetic mechanisms, such as histone modifications, in the regulation of glycosylation-related genes (glycogenes) is still poorly understood. Recent studies have identified several differentially methylated loci associated with IgG glycosylation, but the mechanisms involved in the formation of specific IgG glycosylation patterns remain poorly understood.
{"title":"Epigenetics of Immunoglobulin G Glycosylation.","authors":"Marija Klasić, Vlatka Zoldoš","doi":"10.1007/978-3-030-76912-3_9","DOIUrl":"https://doi.org/10.1007/978-3-030-76912-3_9","url":null,"abstract":"<p><p>Alternative glycosylation of immunoglobulin G (IgG) affects its effector functions during the immune response. IgG glycosylation is altered in many diseases, but also during a healthy life of an individual. Currently, there is limited knowledge of factors that alter IgG glycosylation in the healthy state and factors involved in specific IgG glycosylation patterns associated with pathophysiology. Genetic background plays an important role, but epigenetic mechanisms also contribute to the alteration of IgG glycosylation patterns in healthy life and in disease. It is known that the expression of many glycosyltransferases is regulated by DNA methylation and by microRNA (miRNA) molecules, but the involvement of other epigenetic mechanisms, such as histone modifications, in the regulation of glycosylation-related genes (glycogenes) is still poorly understood. Recent studies have identified several differentially methylated loci associated with IgG glycosylation, but the mechanisms involved in the formation of specific IgG glycosylation patterns remain poorly understood.</p>","PeriodicalId":36906,"journal":{"name":"Experientia supplementum (2012)","volume":"112 ","pages":"289-301"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39549036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.1007/978-3-030-76912-3_10
Fabio Dall'Olio, Nadia Malagolini
Among the multiple roles played by protein glycosylation, the fine regulation of biological interactions is one of the most important. The asparagine 297 (Asn297) of IgG heavy chains is decorated by a diantennary glycan bearing a number of galactose and sialic acid residues on the branches ranging from 0 to 2. In addition, the structure can present core-linked fucose and/or a bisecting GlcNAc. In many inflammatory and autoimmune conditions, as well as in metabolic, cardiovascular, infectious, and neoplastic diseases, the IgG Asn297-linked glycan becomes less sialylated and less galactosylated, leading to increased expression of glycans terminating with GlcNAc. These conditions alter also the presence of core-fucose and bisecting GlcNAc. Importantly, similar glycomic alterations are observed in aging. The common condition, shared by the above-mentioned pathological conditions and aging, is a low-grade, chronic, asymptomatic inflammatory state which, in the case of aging, is known as inflammaging. Glycomic alterations associated with inflammatory diseases often precede disease onset and follow remission. The aberrantly glycosylated IgG glycans associated with inflammation and aging can sustain inflammation through different mechanisms, fueling a vicious loop. These include complement activation, Fcγ receptor binding, binding to lectin receptors on antigen-presenting cells, and autoantibody reactivity. The complex molecular bases of the glycomic changes associated with inflammation and aging are still poorly understood.
{"title":"Immunoglobulin G Glycosylation Changes in Aging and Other Inflammatory Conditions.","authors":"Fabio Dall'Olio, Nadia Malagolini","doi":"10.1007/978-3-030-76912-3_10","DOIUrl":"https://doi.org/10.1007/978-3-030-76912-3_10","url":null,"abstract":"<p><p>Among the multiple roles played by protein glycosylation, the fine regulation of biological interactions is one of the most important. The asparagine 297 (Asn<sub>297</sub>) of IgG heavy chains is decorated by a diantennary glycan bearing a number of galactose and sialic acid residues on the branches ranging from 0 to 2. In addition, the structure can present core-linked fucose and/or a bisecting GlcNAc. In many inflammatory and autoimmune conditions, as well as in metabolic, cardiovascular, infectious, and neoplastic diseases, the IgG Asn<sub>297</sub>-linked glycan becomes less sialylated and less galactosylated, leading to increased expression of glycans terminating with GlcNAc. These conditions alter also the presence of core-fucose and bisecting GlcNAc. Importantly, similar glycomic alterations are observed in aging. The common condition, shared by the above-mentioned pathological conditions and aging, is a low-grade, chronic, asymptomatic inflammatory state which, in the case of aging, is known as inflammaging. Glycomic alterations associated with inflammatory diseases often precede disease onset and follow remission. The aberrantly glycosylated IgG glycans associated with inflammation and aging can sustain inflammation through different mechanisms, fueling a vicious loop. These include complement activation, Fcγ receptor binding, binding to lectin receptors on antigen-presenting cells, and autoantibody reactivity. The complex molecular bases of the glycomic changes associated with inflammation and aging are still poorly understood.</p>","PeriodicalId":36906,"journal":{"name":"Experientia supplementum (2012)","volume":"112 ","pages":"303-340"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39549038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.1007/978-3-030-76912-3_12
Falk Nimmerjahn, Anja Werner
Antibodies produced upon infections with pathogenic microorganisms are essential for clearing primary infections and for providing the host with long-lasting immunity. Moreover, antibodies have become the most widely used platform for developing novel therapies against cancer and autoimmunity, requiring an in-depth understanding of how antibodies mediate their activity in vivo and which factors modulate pro- or anti-inflammatory antibody activities. Since the discovery that select residues present in the sugar domain attached to the immunoglobulin G (IgG) fragment crystallizable (Fc) region can modulate both, pro- and anti-inflammatory effector functions, a wealth of studies has focused on understanding how IgG glycosylation is regulated and how this knowledge can be used to optimize therapeutic antibody activity. With the introduction of glycoengineered afucosylated antibodies in cancer therapy and the initiation of clinical testing of highly sialylated anti-inflammatory antibodies the proof-of-concept that understanding antibody glycosylation can lead to clinical innovation has been provided. The focus of this review is to summarize recent insights into how antibody glycosylation is regulated in vivo and how select sugar residues impact IgG function.
{"title":"Sweet Rules: Linking Glycosylation to Antibody Function.","authors":"Falk Nimmerjahn, Anja Werner","doi":"10.1007/978-3-030-76912-3_12","DOIUrl":"https://doi.org/10.1007/978-3-030-76912-3_12","url":null,"abstract":"<p><p>Antibodies produced upon infections with pathogenic microorganisms are essential for clearing primary infections and for providing the host with long-lasting immunity. Moreover, antibodies have become the most widely used platform for developing novel therapies against cancer and autoimmunity, requiring an in-depth understanding of how antibodies mediate their activity in vivo and which factors modulate pro- or anti-inflammatory antibody activities. Since the discovery that select residues present in the sugar domain attached to the immunoglobulin G (IgG) fragment crystallizable (Fc) region can modulate both, pro- and anti-inflammatory effector functions, a wealth of studies has focused on understanding how IgG glycosylation is regulated and how this knowledge can be used to optimize therapeutic antibody activity. With the introduction of glycoengineered afucosylated antibodies in cancer therapy and the initiation of clinical testing of highly sialylated anti-inflammatory antibodies the proof-of-concept that understanding antibody glycosylation can lead to clinical innovation has been provided. The focus of this review is to summarize recent insights into how antibody glycosylation is regulated in vivo and how select sugar residues impact IgG function.</p>","PeriodicalId":36906,"journal":{"name":"Experientia supplementum (2012)","volume":"112 ","pages":"365-393"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39568549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.1007/978-3-030-76912-3_18
Pranay Bharadwaj, Margaret E Ackerman
Exciting developments have been made in understanding antibody-mediated immunity, deepening understanding of antibody effector functions increasingly recognized as critical mechanisms of action beyond antigen recognition, and significantly broadening the evidence base for the importance of these effector mechanisms across diverse infectious and autoimmune diseases. Because these activities critically depend on the specific glycoforms present on a conserved site of the IgG Fc domain, relationships between the Fc glycosylation profiles of antigen-specific antibody pools and outcomes in infectious and autoimmune disease have begun to be defined, pointing to the key role of this posttranslational modification as a biomarker and mechanistic modifier of antibody-mediated immunity. Here we summarize studies evaluating the profiles and activities of antigen-specific antibodies elicited by infection and vaccination as well as within the context of allo- and autoimmunity, and consider current approaches to rational modification of Fc glycans in vivo.
{"title":"Glycosylation of Antigen-Specific Antibodies: Perspectives on Immunoglobulin G Glycosylation in Vaccination and Immunotherapy.","authors":"Pranay Bharadwaj, Margaret E Ackerman","doi":"10.1007/978-3-030-76912-3_18","DOIUrl":"https://doi.org/10.1007/978-3-030-76912-3_18","url":null,"abstract":"<p><p>Exciting developments have been made in understanding antibody-mediated immunity, deepening understanding of antibody effector functions increasingly recognized as critical mechanisms of action beyond antigen recognition, and significantly broadening the evidence base for the importance of these effector mechanisms across diverse infectious and autoimmune diseases. Because these activities critically depend on the specific glycoforms present on a conserved site of the IgG Fc domain, relationships between the Fc glycosylation profiles of antigen-specific antibody pools and outcomes in infectious and autoimmune disease have begun to be defined, pointing to the key role of this posttranslational modification as a biomarker and mechanistic modifier of antibody-mediated immunity. Here we summarize studies evaluating the profiles and activities of antigen-specific antibodies elicited by infection and vaccination as well as within the context of allo- and autoimmunity, and consider current approaches to rational modification of Fc glycans in vivo.</p>","PeriodicalId":36906,"journal":{"name":"Experientia supplementum (2012)","volume":"112 ","pages":"565-587"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39552051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.1007/978-3-030-76912-3_11
Kaitlyn A Lagattuta, Peter A Nigrovic
Glycosylation within the immunoglobulin G (IgG) Fc region modulates its ability to engage complement and Fc receptors, affording the opportunity to fine-tune effector functions. Mechanisms regulating IgG Fc glycans remain poorly understood. Changes accompanying menarche, menopause, and pregnancy have long implicated hormonal factors. Intervention studies now confirm that estrogens enhance IgG Fc galactosylation, in females and also in males, defining the first pathway modulating Fc glycans and thereby a new link between sex and immunity. This mechanism may participate in fetal-maternal immunity, antibody-mediated inflammation, and other aspects of age- and sex-specific immune function. Here we review the changes affecting the IgG Fc glycome from childhood through old age, the evidence establishing a role for estrogens, and research directions to uncover associated mechanisms that may inform therapeutic intervention.
{"title":"Estrogen-Driven Changes in Immunoglobulin G Fc Glycosylation.","authors":"Kaitlyn A Lagattuta, Peter A Nigrovic","doi":"10.1007/978-3-030-76912-3_11","DOIUrl":"https://doi.org/10.1007/978-3-030-76912-3_11","url":null,"abstract":"<p><p>Glycosylation within the immunoglobulin G (IgG) Fc region modulates its ability to engage complement and Fc receptors, affording the opportunity to fine-tune effector functions. Mechanisms regulating IgG Fc glycans remain poorly understood. Changes accompanying menarche, menopause, and pregnancy have long implicated hormonal factors. Intervention studies now confirm that estrogens enhance IgG Fc galactosylation, in females and also in males, defining the first pathway modulating Fc glycans and thereby a new link between sex and immunity. This mechanism may participate in fetal-maternal immunity, antibody-mediated inflammation, and other aspects of age- and sex-specific immune function. Here we review the changes affecting the IgG Fc glycome from childhood through old age, the evidence establishing a role for estrogens, and research directions to uncover associated mechanisms that may inform therapeutic intervention.</p>","PeriodicalId":36906,"journal":{"name":"Experientia supplementum (2012)","volume":"112 ","pages":"341-361"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39549037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}