Pub Date : 2020-11-04DOI: 10.1109/INDEL50386.2020.9266166
Dimitris Baros, Nick Rigogiannis, N. Papanikolaou, Michael Loupis
This work aims to investigate the effects of communication delay in a DC microgrid, which operates under an adaptive droop control scheme. A case study of a residential DC microgrid is examined, which is essentially a household prosumer with power generation units, both on site and remotely, energy storage units and various loads. Conventional droop control schemes have been widely adopted in DC microgrids, although they cause voltage deviation, due to the different characteristics of generation units, whereas their performance is sensitive to line impedances. In order to compensate this deviation, while maintaining current sharing accuracy (adapting to line impedances), a distributed secondary controller is considered, which regards only the information of neighboring converters, by the aid of digital communication links. The impact of various communication methods, in terms of communication delay is examined and evaluated via MATLAB/Simulink simulations.
{"title":"Investigation of Communication Delay Impact on DC Microgrids with Adaptive Droop Control","authors":"Dimitris Baros, Nick Rigogiannis, N. Papanikolaou, Michael Loupis","doi":"10.1109/INDEL50386.2020.9266166","DOIUrl":"https://doi.org/10.1109/INDEL50386.2020.9266166","url":null,"abstract":"This work aims to investigate the effects of communication delay in a DC microgrid, which operates under an adaptive droop control scheme. A case study of a residential DC microgrid is examined, which is essentially a household prosumer with power generation units, both on site and remotely, energy storage units and various loads. Conventional droop control schemes have been widely adopted in DC microgrids, although they cause voltage deviation, due to the different characteristics of generation units, whereas their performance is sensitive to line impedances. In order to compensate this deviation, while maintaining current sharing accuracy (adapting to line impedances), a distributed secondary controller is considered, which regards only the information of neighboring converters, by the aid of digital communication links. The impact of various communication methods, in terms of communication delay is examined and evaluated via MATLAB/Simulink simulations.","PeriodicalId":369921,"journal":{"name":"2020 International Symposium on Industrial Electronics and Applications (INDEL)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132613914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-11-04DOI: 10.1109/INDEL50386.2020.9266255
V. Katić, Aleksandar M. Stanisavljević
The paper addresses the possibility of using the Constant-Q Gabor transform (QGT) for voltage disturbance analysis in smart grids. We have implemented and tested our ideas on an IEEE-13 bus test system with a high level of distributed generation. We also compare the results of our GT algorithm with the state-of-the-art approaches such as the Fast Fourier Transform (FFT) and the Short-time Fourier Transform (STFT). We show that QGT exhibits significantly better performance in detecting disturbances in the grid than the other two applied methods, even though it has the same computational complexity. We argue that QGT can be a good choice in applications where the computational power of microprocessors is limited, and simplicity is preferable; therefore, it can be a viable alternative to machine learning-based methods.
{"title":"Utilization of the Constant-Q Gabor transform for analysis of voltage disturbance in smart grids","authors":"V. Katić, Aleksandar M. Stanisavljević","doi":"10.1109/INDEL50386.2020.9266255","DOIUrl":"https://doi.org/10.1109/INDEL50386.2020.9266255","url":null,"abstract":"The paper addresses the possibility of using the Constant-Q Gabor transform (QGT) for voltage disturbance analysis in smart grids. We have implemented and tested our ideas on an IEEE-13 bus test system with a high level of distributed generation. We also compare the results of our GT algorithm with the state-of-the-art approaches such as the Fast Fourier Transform (FFT) and the Short-time Fourier Transform (STFT). We show that QGT exhibits significantly better performance in detecting disturbances in the grid than the other two applied methods, even though it has the same computational complexity. We argue that QGT can be a good choice in applications where the computational power of microprocessors is limited, and simplicity is preferable; therefore, it can be a viable alternative to machine learning-based methods.","PeriodicalId":369921,"journal":{"name":"2020 International Symposium on Industrial Electronics and Applications (INDEL)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123721937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}