Pub Date : 2017-01-01DOI: 10.1016/j.molcata.2016.10.033
G.J. Lichtenegger , M. Maier , M. Hackl , J.G. Khinast , W. Gössler , T. Griesser , V.S.Phani Kumar , H. Gruber-Woelfler , P.A. Deshpande
Palladium substituted CeO2, SnO2 and their mixed oxides have been synthesized in quantitative yields out of non-toxic and inexpensive precursors using a simple and rapid single step solution combustion method. The resulting oxides, especially the mixed oxides Ce0.79Sn0.20Pd0.01O2-δ, Sn0.79Ce0.20Pd0.01O2-δ and Sn0.99Pd0.01O2-δ proved to be highly active (TOF > 12,000 h−1) for Suzuki-Miyaura cross-couplings of phenylboronic acid with various bromoarenes. The reactions were carried out in ambient air at moderate temperatures using environmentally friendly aqueous ethanol solutions as reaction solvents. Minimal amounts of palladium in the product solution ( < 0.14 mg/L), the reaction kinetics as well as catalyst poisoning tests support the thesis that the reaction proceeds via dissolved palladium species in a homogeneous reaction mechanism. Nevertheless, the synthesized catalysts could be reused for at least five times with only minor changes in activity and no changes in the crystal structure, indicating the high potential of the investigated catalysts as quasi-heterogeneous CC coupling catalysts.
{"title":"Suzuki-Miyaura coupling reactions using novel metal oxide supported ionic palladium catalysts","authors":"G.J. Lichtenegger , M. Maier , M. Hackl , J.G. Khinast , W. Gössler , T. Griesser , V.S.Phani Kumar , H. Gruber-Woelfler , P.A. Deshpande","doi":"10.1016/j.molcata.2016.10.033","DOIUrl":"https://doi.org/10.1016/j.molcata.2016.10.033","url":null,"abstract":"<div><p>Palladium substituted CeO<sub>2</sub>, SnO<sub>2</sub> and their mixed oxides have been synthesized in quantitative yields out of non-toxic and inexpensive precursors using a simple and rapid single step solution combustion method. The resulting oxides, especially the mixed oxides Ce<sub>0.79</sub>Sn<sub>0.20</sub>Pd<sub>0.01</sub>O<sub>2-δ</sub>, Sn<sub>0.79</sub>Ce<sub>0.20</sub>Pd<sub>0.01</sub>O<sub>2-δ</sub> and Sn<sub>0.99</sub>Pd<sub>0.01</sub>O<sub>2-δ</sub> proved to be highly active (TOF<!--> <!-->><!--> <!-->12,000<!--> <!-->h<sup>−1</sup>) for Suzuki-Miyaura cross-couplings of phenylboronic acid with various bromoarenes. The reactions were carried out in ambient air at moderate temperatures using environmentally friendly aqueous ethanol solutions as reaction solvents. Minimal amounts of palladium in the product solution (<!--> <!--><<!--> <!-->0.14<!--> <!-->mg/L), the reaction kinetics as well as catalyst poisoning tests support the thesis that the reaction proceeds via dissolved palladium species in a homogeneous reaction mechanism. Nevertheless, the synthesized catalysts could be reused for at least five times with only minor changes in activity and no changes in the crystal structure, indicating the high potential of the investigated catalysts as quasi-heterogeneous C<img>C coupling catalysts.</p></div>","PeriodicalId":370,"journal":{"name":"Journal of Molecular Catalysis A: Chemical","volume":"426 ","pages":"Pages 39-51"},"PeriodicalIF":5.062,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.molcata.2016.10.033","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1737688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-01DOI: 10.1016/j.molcata.2016.08.013
Evgeny V. Kudrik , Alexander B. Sorokin
Low temperature selective transformation of alkanes to useful products continues to be an important challenge in chemistry and industry. μ-Nitrido diiron phthalocyanines in combination with H2O2 have been recently identified as powerful oxidation catalysts for these challenging reactions due to the formation of ultra-high valent diiron oxo species PcFe(IV)μNFe(IV)O(Pc+). This very strong two-electron oxidizing species is generated from peroxo complex PcFe(IV)μNFe(III)OOR(Pc) (RH in the case of H2O2) via heterolytic OO bond cleavage. Therein we show that the evolution of the peroxo diiron complex depends on the peroxide structure. Using tBuOOH we have demonstrated the formation of an one-electron oxidizing PcFe(IV)μNFe(IV)O(Pc) and tBuO radical via homolytic OO cleavage of the peroxocomplex. The reactivity of the μ-nitrido diiron tetra-t-butylphthalocyanine − tBuOOH catalytic system was investigated in the oxidation of different CH bonds in alkanes, olefins, aromatic and alkylaromatic compounds. The main products of cyclohexane oxidation were cyclohexanone and cyclohexanol whereas bicyclohexyl was formed in minor amounts even in the presence of O2 and tBuOOH. Under optimal conditions, the turnover numbers of almost 5300 have been achieved.
{"title":"Oxidation of aliphatic and aromatic CH bonds by t-BuOOH catalyzed by μ-nitrido diiron phthalocyanine","authors":"Evgeny V. Kudrik , Alexander B. Sorokin","doi":"10.1016/j.molcata.2016.08.013","DOIUrl":"https://doi.org/10.1016/j.molcata.2016.08.013","url":null,"abstract":"<div><p>Low temperature selective transformation of alkanes to useful products continues to be an important challenge in chemistry and industry. μ-Nitrido diiron phthalocyanines in combination with H<sub>2</sub>O<sub>2</sub> have been recently identified as powerful oxidation catalysts for these challenging reactions due to the formation of ultra-high valent diiron oxo species PcFe(IV)μNFe(IV)<img>O(Pc<sup>+</sup><img>). This very strong <em>two-electron oxidizing</em> species is generated from peroxo complex PcFe(IV)μNFe(III)<img>O<img>O<img>R(Pc) (R<img>H in the case of H<sub>2</sub>O<sub>2</sub>) via <em>heterolytic</em> O<img>O bond cleavage. Therein we show that the evolution of the peroxo diiron complex depends on the peroxide structure. Using <sup>t</sup>BuOOH we have demonstrated the formation of an <em>one-electron oxidizing</em> PcFe(IV)μNFe(IV)<img>O(Pc) and <sup>t</sup>BuO<img> radical via <em>homolytic</em> O<img>O cleavage of the peroxocomplex. The reactivity of the μ-nitrido diiron tetra-<em>t</em>-butylphthalocyanine − <sup>t</sup>BuOOH catalytic system was investigated in the oxidation of different C<img>H bonds in alkanes, olefins, aromatic and alkylaromatic compounds. The main products of cyclohexane oxidation were cyclohexanone and cyclohexanol whereas bicyclohexyl was formed in minor amounts even in the presence of O<sub>2</sub> and <sup>t</sup>BuOOH. Under optimal conditions, the turnover numbers of almost 5300 have been achieved.</p></div>","PeriodicalId":370,"journal":{"name":"Journal of Molecular Catalysis A: Chemical","volume":"426 ","pages":"Pages 499-505"},"PeriodicalIF":5.062,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.molcata.2016.08.013","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2879561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-01DOI: 10.1016/j.molcata.2016.08.014
Ekaterina M. Titova , S.M. Wahidur Rahaman , Elena S. Shubina , Rinaldo Poli , Natalia V. Belkova , Eric Manoury
Complexes [M(P,SR)(diene)X] where (P,SR) = CpFe[1,2-C5H3(PPh2)(CH2SR)] (M = Ir, R = tBu or Bn diene = cod, X = Cl; M = Rh, diene = cod or nbd; X = BF4 or Cl) were used as precatalysts for the redox isomerization of various allylic alcohols (7a–e) to the corresponding saturated ketones (8a–e) and or hydrogenation to the saturated alcohol (9a–e). In optimization studies using 1-phenyl-2-propen-1-ol (7a) in THF and in iPrOH/MeONa, the only observed product was the saturated alcohol 1-phenyl-1-propanol (9a) when working under a 30 bar H2 pressure, but activation for only 1 min under H2 pressure and then continuation under 1 bar of H2 or Ar led to increasing amounts of the allylic isomerization product propiophenone (8a). Continued reaction under H2 converted (8a) into (9a). The Rh precatalysts were more active than the Ir analogues. For the rhodium precatalysts (3) and (4), the redox isomerization reaction could be carried out after precatalyst activation in iPrOH/MeONa under Ar at 82 °C (without H2) with complete conversion in 1 h (1% catalyst loading). However, longer reaction times resulted in slow transfer hydrogenation of (8a) leading to (9a) with low enantiomeric excess. Extension of the H2-free activation of the Rh precatalysts in iPrOH to other allylic alcohol substrates (7b–d) yielded the corresponding ketones with good to excellent yields and excellent chemoselectivities under appropriate conditions.
复合物[M (P, SR)(二烯)X] (P, SR) = CpFe [1, 2-C5H3 (PPh2) (CH2SR)] (M = Ir, R = tBu或Bn二烯=鳕鱼,X = Cl;M = Rh, diene = cod或nbd;X = BF4或Cl)作为预催化剂,将各种烯丙醇(7a-e)氧化还原异构化为相应的饱和酮(8a-e),或氢化为饱和醇(9a-e)。在THF和iPrOH/MeONa中使用1-苯基-2-丙烯-1-醇(7a)的优化研究中,在30 bar H2压力下工作时,唯一观察到的产物是饱和醇-1-苯基-1-丙醇(9a),但在H2压力下激活仅1 min,然后在1 bar H2或Ar下继续激活导致烯丙异构化产物丙烯酮(8a)的数量增加。在H2下继续反应,(8a)转化为(9a)。Rh预催化剂的活性高于Ir类似物。对于铑预催化剂(3)和(4),预催化剂在82℃氩气条件下(不含H2)在iPrOH/MeONa中活化后可进行氧化还原异构化反应,在1 h(1%催化剂负载)内完全转化。然而,较长的反应时间导致(8a)的转移加氢缓慢,导致(9a)具有较低的对映体过量。将iPrOH中Rh预催化剂的无h2活化扩展到其他烯丙醇底物(7b-d),在适当的条件下,可以得到相应的产率良好至优异的酮类,并具有良好的化学选择性。
{"title":"Catalytic redox isomerization of allylic alcohols with rhodium and iridium complexes with ferrocene phosphine-thioether ligands","authors":"Ekaterina M. Titova , S.M. Wahidur Rahaman , Elena S. Shubina , Rinaldo Poli , Natalia V. Belkova , Eric Manoury","doi":"10.1016/j.molcata.2016.08.014","DOIUrl":"https://doi.org/10.1016/j.molcata.2016.08.014","url":null,"abstract":"<div><p>Complexes [M(P,SR)(diene)X] where (P,SR)<!--> <!-->=<!--> <!-->CpFe[1,2-C<sub>5</sub>H<sub>3</sub>(PPh<sub>2</sub>)(CH<sub>2</sub>SR)] (M<!--> <!-->=<!--> <!-->Ir, R<!--> <!-->=<!--> <!-->tBu or Bn diene<!--> <!-->=<!--> <!-->cod, X<!--> <!-->=<!--> <!-->Cl; M<!--> <!-->=<!--> <!-->Rh, diene<!--> <!-->=<!--> <!-->cod or nbd; X<!--> <!-->=<!--> <!-->BF<sub>4</sub> or Cl) were used as precatalysts for the redox isomerization of various allylic alcohols (<strong>7a–e</strong>) to the corresponding saturated ketones (<strong>8a–e</strong>) and or hydrogenation to the saturated alcohol (<strong>9a–e</strong>). In optimization studies using 1-phenyl-2-propen-1-ol (<strong>7a</strong>) in THF and in iPrOH/MeONa, the only observed product was the saturated alcohol 1-phenyl-1-propanol (<strong>9</strong>a) when working under a 30<!--> <!-->bar H<sub>2</sub> pressure, but activation for only 1<!--> <!-->min under H<sub>2</sub> pressure and then continuation under 1<!--> <!-->bar of H<sub>2</sub> or Ar led to increasing amounts of the allylic isomerization product propiophenone (<strong>8a</strong>). Continued reaction under H<sub>2</sub> converted (<strong>8a</strong>) into (<strong>9a</strong>). The Rh precatalysts were more active than the Ir analogues. For the rhodium precatalysts (<strong>3</strong>) and (<strong>4</strong>), the redox isomerization reaction could be carried out after precatalyst activation in iPrOH/MeONa under Ar at 82<!--> <!-->°C (without H<sub>2</sub>) with complete conversion in 1<!--> <!-->h (1% catalyst loading). However, longer reaction times resulted in slow transfer hydrogenation of (<strong>8a</strong>) leading to (<strong>9a</strong>) with low enantiomeric excess. Extension of the H<sub>2</sub>-free activation of the Rh precatalysts in iPrOH to other allylic alcohol substrates (<strong>7b–d</strong>) yielded the corresponding ketones with good to excellent yields and excellent chemoselectivities under appropriate conditions.</p></div>","PeriodicalId":370,"journal":{"name":"Journal of Molecular Catalysis A: Chemical","volume":"426 ","pages":"Pages 376-380"},"PeriodicalIF":5.062,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.molcata.2016.08.014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2879562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-01DOI: 10.1016/j.molcata.2016.08.033
A. Simaioforidou, M. Papastergiou, A. Margellou, D. Petrakis, M. Louloudi
Two types of heterogeneous catalytic materials, MnII-L3imid@Cox and MnII-L3imid@PCox, have been synthesized and compared by covalent grafting of a catalytically active [MnII-L3imid] complex on the surface of an oxidized activated carbon (Cox) and an oxidized pyrolytic carbon from recycled-tire char (PCox). Both hybrids are non-porous bearing graphitic layers intermixed with disordered sp2/sp3 carbon units. Raman spectra show that (ID/IG)activatedcarbon > (ID/IG)pyrolyticcarbon revealing that oxidized activated carbon(Cox) is less graphitized than oxidized pyrolytic carbon (PCox). The MnII-L3imid@Cox and MnII-L3imid@PCox catalysts were evaluated for alkene oxidation with H2O2 in the presence of CH3COONH4. Both showed high selectivity towards epoxides and comparing the achieved yields and TONs, they appear equivalent. However, MnII-L3imid@PCox catalyst is kinetically faster than the MnII-L3imid@Cox (accomplishing the catalytic runs in 1.5 h vs. 5 h). Thus, despite the similarity in TONs MnII-L3imid@PCox achieved extremely higher TOFs vs. MnII-L3imid@Cox. Intriguingly, in terms of recyclability, MnII-L3imid@Cox could be reused for a 2th run showing a ∼20% loss of its catalytic activity, while MnII-L3imid@PCox practically no recyclable. This phenomenon is discussed in a mechanistic context; interlinking oxidative destruction of the Mn-complex with high TOFs for MnII-L3imid@PCox, while the low-TOFs of MnII-L3imid@Cox are preventive for the oxidative destruction of the Mn-complex.
通过在氧化活性炭(Cox)和再生轮胎炭(PCox)的氧化热解碳(PCox)表面接枝具有催化活性的[mni - l3imid]配合物,合成了两种不同类型的催化材料MnII-L3imid@Cox和MnII-L3imid@PCox,并对其进行了比较。两种杂化体均为无孔石墨层,混杂无序的sp2/sp3碳单元。拉曼光谱显示(ID/IG)活性炭>(ID/IG)热解碳,表明氧化活性炭(Cox)的石墨化程度低于氧化热解碳(PCox)。考察了MnII-L3imid@Cox和MnII-L3imid@PCox两种催化剂在CH3COONH4存在下,用H2O2氧化烯烃的性能。两者对环氧化物均表现出较高的选择性,并将其产率和吨数进行比较,两者表现出相当的选择性。然而,MnII-L3imid@PCox催化剂在动力学上比MnII-L3imid@Cox更快(完成催化运行在1.5 h vs. 5 h)。因此,尽管在TONs中相似,MnII-L3imid@PCox比MnII-L3imid@Cox获得了更高的tof。有趣的是,在可回收性方面,MnII-L3imid@Cox可以重复使用2次,显示其催化活性损失约20%,而MnII-L3imid@PCox几乎不可回收。这种现象是在机械的背景下讨论的;对于MnII-L3imid@PCox,高tof的mn -络合物的氧化破坏相互联系,而MnII-L3imid@Cox的低tof对mn -络合物的氧化破坏起预防作用。
{"title":"Activated vs. pyrolytic carbon as support matrix for chemical functionalization: Efficient heterogeneous non-heme Mn(II) catalysts for alkene oxidation with H2O2","authors":"A. Simaioforidou, M. Papastergiou, A. Margellou, D. Petrakis, M. Louloudi","doi":"10.1016/j.molcata.2016.08.033","DOIUrl":"https://doi.org/10.1016/j.molcata.2016.08.033","url":null,"abstract":"<div><p>Two types of heterogeneous catalytic materials, <strong>Mn<sup>II</sup>-L<sub>3</sub>imid@Cox</strong> and <strong>Mn<sup>II</sup>-L<sub>3</sub>imid@PCox</strong>, have been synthesized and compared by covalent grafting of a catalytically active [<strong>Mn<sup>II</sup>-L<sub>3</sub>imid]</strong> complex on the surface of an oxidized activated carbon (<strong>Cox)</strong> and an oxidized pyrolytic carbon from recycled-tire char (<strong>PCox)</strong>. Both hybrids are non-porous bearing graphitic layers intermixed with disordered sp<sup>2</sup>/sp<sup>3</sup> carbon units. Raman spectra show that (I<sub>D</sub>/I<sub>G</sub>)<sub>activatedcarbon</sub> <!-->><!--> <!-->(I<sub>D</sub>/I<sub>G</sub>)<sub>pyrolyticcarbon</sub> revealing that oxidized activated carbon(<strong>Cox)</strong> is less graphitized than oxidized pyrolytic carbon (<strong>PCox)</strong>. The <strong>Mn<sup>II</sup>-L<sub>3</sub>imid@Cox</strong> and <strong>Mn<sup>II</sup>-L<sub>3</sub>imid@PCox</strong> catalysts were evaluated for alkene oxidation with H<sub>2</sub>O<sub>2</sub> in the presence of CH<sub>3</sub>COONH<sub>4</sub>. Both showed high selectivity towards epoxides and comparing the achieved yields and TONs, they appear equivalent. However, <strong>Mn<sup>II</sup>-L<sub>3</sub>imid@PCox</strong> catalyst is kinetically faster than the <strong>Mn<sup>II</sup>-L<sub>3</sub>imid@Cox</strong> (accomplishing the catalytic runs in 1.5<!--> <!-->h <em>vs</em>. 5<!--> <!-->h). Thus, despite the similarity in TONs <strong>Mn<sup>II</sup>-L<sub>3</sub>imid@PCox</strong> achieved extremely higher TOFs <strong><em>vs</em>. Mn<sup>II</sup>-L<sub>3</sub>imid@Cox</strong>. Intriguingly, in terms of recyclability, <strong>Mn<sup>II</sup>-L<sub>3</sub>imid@Cox</strong> could be reused for a 2th run showing a ∼20% loss of its catalytic activity, while <strong>Mn<sup>II</sup>-L<sub>3</sub>imid@PCox</strong> practically no recyclable. This phenomenon is discussed in a mechanistic context; interlinking oxidative destruction of the Mn-complex with high TOFs for <strong>Mn<sup>II</sup>-L<sub>3</sub>imid@PCox</strong>, while the low-TOFs of <strong>Mn<sup>II</sup>-L<sub>3</sub>imid@Cox</strong> are preventive for the oxidative destruction of the Mn-complex.</p></div>","PeriodicalId":370,"journal":{"name":"Journal of Molecular Catalysis A: Chemical","volume":"426 ","pages":"Pages 516-525"},"PeriodicalIF":5.062,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.molcata.2016.08.033","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1737687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-01DOI: 10.1016/j.molcata.2016.11.004
Lilian Osiglio, Gabriel Sathicq, Luis Pizzio, Gustavo Romanelli, Mirta Blanco
Zirconia modified with boric acid and/or tungstophosphoric acid calcined at 320 °C were prepared, characterized and used as catalysts in the production of acetates from diverse alcohols and phenols. Polyethylene glycol (PEG) of different molecular weight (400, 2000, 6000 Da) were added as low cost pore-forming agents during zirconia synthesis using zirconyl chloride as precursor and ammonium hydroxide as precipitating agent. The zirconias were impregnated with aqueous solutions of boric acid and/or tungstophosphoric acid (TPA). The borated zirconias, zirconias modified with TPA and zirconias doped with both boron and TPA were amorphous mesoporous materials with very strong acid sites, and specific surface areas SBET of around 200, 100, and 150 m2/g, respectively. The FT-IR spectra of borated zirconias exhibited the bands of boron species, while the zirconias modified with TPA presented the characteristic bands of tungstophosphate anion, and the zirconias doped with both boron and TPA showed a degradation of the TPA anion, confirmed by 31P MAS-NMR. The borated zirconias and the zirconias modified with TPA gave excellent selectivity and yield in the 2-phenylethanol esterification with acetic acid. The use of these materials allows obtaining higher or similar results than those reported in the literature. Zirconias doped with both boron and TPA gave lower values, due to the transformation of the [PW12O40]3− Keggin anion in to the [P2W21O71]6− and [PW11O39]7− species. The reactivity towards acetylation with acetic acid of different alcohols and phenols using the best catalyst was ordered according to: primary alcohols > secondary alcohols > phenols. The reactivity difference of the alcohols and phenols was correlated with the electronic density on the oxygen atom and steric effects.
{"title":"Preparation of acetates catalyzed by boric acid and/or tungstophosphoric acid-modified zirconia obtained employing polyethylene glycols as pore-forming agents","authors":"Lilian Osiglio, Gabriel Sathicq, Luis Pizzio, Gustavo Romanelli, Mirta Blanco","doi":"10.1016/j.molcata.2016.11.004","DOIUrl":"https://doi.org/10.1016/j.molcata.2016.11.004","url":null,"abstract":"<div><p>Zirconia modified with boric acid and/or tungstophosphoric acid calcined at 320<!--> <!-->°C were prepared, characterized and used as catalysts in the production of acetates from diverse alcohols and phenols. Polyethylene glycol (PEG) of different molecular weight (400, 2000, 6000<!--> <!-->Da) were added as low cost pore-forming agents during zirconia synthesis using zirconyl chloride as precursor and ammonium hydroxide as precipitating agent. The zirconias were impregnated with aqueous solutions of boric acid and/or tungstophosphoric acid (TPA). The borated zirconias, zirconias modified with TPA and zirconias doped with both boron and TPA were amorphous mesoporous materials with very strong acid sites, and specific surface areas S<sub>BET</sub> of around 200, 100, and 150<!--> <!-->m<sup>2</sup>/g, respectively. The FT-IR spectra of borated zirconias exhibited the bands of boron species, while the zirconias modified with TPA presented the characteristic bands of tungstophosphate anion, and the zirconias doped with both boron and TPA showed a degradation of the TPA anion, confirmed by <sup>31</sup>P MAS-NMR. The borated zirconias and the zirconias modified with TPA gave excellent selectivity and yield in the 2-phenylethanol esterification with acetic acid. The use of these materials allows obtaining higher or similar results than those reported in the literature. Zirconias doped with both boron and TPA gave lower values, due to the transformation of the [PW<sub>12</sub>O<sub>40</sub>]<sup>3−</sup> Keggin anion in to the [P<sub>2</sub>W<sub>21</sub>O<sub>71</sub>]<sup>6−</sup> and [PW<sub>11</sub>O<sub>39</sub>]<sup>7−</sup> species. The reactivity towards acetylation with acetic acid of different alcohols and phenols using the best catalyst was ordered according to: primary alcohols<!--> <!-->><!--> <!-->secondary alcohols<!--> <!-->><!--> <!-->phenols. The reactivity difference of the alcohols and phenols was correlated with the electronic density on the oxygen atom and steric effects.</p></div>","PeriodicalId":370,"journal":{"name":"Journal of Molecular Catalysis A: Chemical","volume":"426 ","pages":"Pages 88-96"},"PeriodicalIF":5.062,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.molcata.2016.11.004","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1737690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-01DOI: 10.1016/j.molcata.2016.11.026
E. Ghazalian , N. Ghasemi , A.R. Amani-Ghadim
Gadolinium (Gd)-doped silver orthophosphate (Ag3PO4) nanoparticles, with spherical morphology, were synthesized by a co-precipitation method and their photocatalytic activities were evaluated in degradation of Reactive Blue 19 (RB19), as a model organic pollutant. The synthesized Ag3PO4 and Gd-doped Ag3PO4 were characterized using X-ray diffraction pattern analysis, scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, diffuse reflectance UV–vis spectroscopy and photoluminescence spectroscopy. In comparison with Ag3PO4, the experimental results revealed a considerable enhancement in photocatalytic activity of Gd-doped Ag3PO4. The optimum mole fraction of Gd loading in Ag3PO4 was 3%. Lower photocatalytic degradation efficiency of RB19 in the presence of oxalate anion and p-benzoquinone indicated the crucial role of photogenerated holes and superoxide anion-radicals in photocatalysis on Gd-doped Ag3PO4. The enhancement of photocatalytic activity was attributed to scavenge the photoexcited electrons, and to suppress their recombination with holes and generation of active oxygen species. A nonlinear empirical kinetic model was introduced to predict the apparent first order rate constant (kapp) as a function of operational parameters, including initial RB19 concentration, Gd-doped Ag3PO4 dosage and light intensity. Degradation byproducts were identified using gas chromatography-mass spectrometry and a probable pathway was proposed. Moreover, Gd-doped Ag3PO4 samples displayed adequate reusability after three successive experiments.
{"title":"Effect of gadollunium doping on visible light photocatalytic performance of Ag3PO4: Evaluation of activity in degradation of an anthraquinone dye and mechanism study","authors":"E. Ghazalian , N. Ghasemi , A.R. Amani-Ghadim","doi":"10.1016/j.molcata.2016.11.026","DOIUrl":"https://doi.org/10.1016/j.molcata.2016.11.026","url":null,"abstract":"<div><p>Gadolinium (Gd)-doped silver orthophosphate (Ag<sub>3</sub>PO<sub>4</sub>) nanoparticles, with spherical morphology, were synthesized by a co-precipitation method and their photocatalytic activities were evaluated in degradation of Reactive Blue 19 (RB19), as a model organic pollutant. The synthesized Ag<sub>3</sub>PO<sub>4</sub> and Gd-doped Ag<sub>3</sub>PO<sub>4</sub> were characterized using X-ray diffraction pattern analysis, scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, diffuse reflectance UV–vis spectroscopy and photoluminescence spectroscopy. In comparison with Ag<sub>3</sub>PO<sub>4</sub>, the experimental results revealed a considerable enhancement in photocatalytic activity of Gd-doped Ag<sub>3</sub>PO<sub>4</sub>. The optimum mole fraction of Gd loading in Ag<sub>3</sub>PO<sub>4</sub> was 3%. Lower photocatalytic degradation efficiency of RB19 in the presence of oxalate anion and p-benzoquinone indicated the crucial role of photogenerated holes and superoxide anion-radicals in photocatalysis on Gd-doped Ag<sub>3</sub>PO<sub>4</sub>. The enhancement of photocatalytic activity was attributed to scavenge the photoexcited electrons, and to suppress their recombination with holes and generation of active oxygen species. A nonlinear empirical kinetic model was introduced to predict the apparent first order rate constant (<em>k<sub>app</sub></em>) as a function of operational parameters, including initial RB19 concentration, Gd-doped Ag<sub>3</sub>PO<sub>4</sub> dosage and light intensity. Degradation byproducts were identified using gas chromatography-mass spectrometry and a probable pathway was proposed. Moreover, Gd-doped Ag<sub>3</sub>PO<sub>4</sub> samples displayed adequate reusability after three successive experiments.</p></div>","PeriodicalId":370,"journal":{"name":"Journal of Molecular Catalysis A: Chemical","volume":"426 ","pages":"Pages 257-270"},"PeriodicalIF":5.062,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.molcata.2016.11.026","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1737691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-01DOI: 10.1016/j.molcata.2016.11.003
Xingcui Guo , Huihuan Dong , Bin Li , Linlin Dong , Xindong Mu , Xiufang Chen
Different functional groups (i.e. NH2, COOH, OH and nitrogen-doping) modified CNTs (denoted as AMCN, CMCN, HMCN and NMCN, respectively) supported ruthenium catalysts (Ru/AMCN, Ru/CMCN, Ru/HMCN and Ru/NMCN) were prepared by incipient wetness impregnation method. They were fully characterized by XRD, TG, Raman, XPS, TPD and TEM to elucidate the relationship between the physical property and their catalytic performance. TEM results shown that Ru particles were well dispersed on the surface for all the samples with the size of 1.48–1.99 nm. The effects of functional groups of carbon nanotubes (CNTs), nitrogen doping and base additive types on activity and selectivity of ethylene glycol (EG) and propylene glycol (1,2-PD) were investigated. In addition, the activity and final products distribution were much influenced by the properties of functional groups on CNTs and the type of metal cation of the base promoters, which probably participated in the reaction for accelerating a retro-aldol reaction for CC cleavage. Among the catalysts, Ru supported on AMCN exhibited the best catalytic activities and glycols selectivities than on MCN, CMCN, HMCN and NMCN.
{"title":"Influence of the functional groups of multiwalled carbon nanotubes on performance of Ru catalysts in sorbitol hydrogenolysis to glycols","authors":"Xingcui Guo , Huihuan Dong , Bin Li , Linlin Dong , Xindong Mu , Xiufang Chen","doi":"10.1016/j.molcata.2016.11.003","DOIUrl":"https://doi.org/10.1016/j.molcata.2016.11.003","url":null,"abstract":"<div><p>Different functional groups (i.e. <img>NH<sub>2</sub>, <img>COOH, <img>OH and nitrogen-doping) modified CNTs (denoted as AMCN, CMCN, HMCN and NMCN, respectively) supported ruthenium catalysts (Ru/AMCN, Ru/CMCN, Ru/HMCN and Ru/NMCN) were prepared by incipient wetness impregnation method. They were fully characterized by XRD, TG, Raman, XPS, TPD and TEM to elucidate the relationship between the physical property and their catalytic performance. TEM results shown that Ru particles were well dispersed on the surface for all the samples with the size of 1.48–1.99<!--> <!-->nm. The effects of functional groups of carbon nanotubes (CNTs), nitrogen doping and base additive types on activity and selectivity of ethylene glycol (EG) and propylene glycol (1,2-PD) were investigated. In addition, the activity and final products distribution were much influenced by the properties of functional groups on CNTs and the type of metal cation of the base promoters, which probably participated in the reaction for accelerating a retro-aldol reaction for C<img>C cleavage. Among the catalysts, Ru supported on AMCN exhibited the best catalytic activities and glycols selectivities than on MCN, CMCN, HMCN and NMCN.</p></div>","PeriodicalId":370,"journal":{"name":"Journal of Molecular Catalysis A: Chemical","volume":"426 ","pages":"Pages 79-87"},"PeriodicalIF":5.062,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.molcata.2016.11.003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2878505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-01DOI: 10.1016/j.molcata.2016.11.010
Cihan Özen, Nurcan Şenyurt Tüzün
Protonation of copper-triazolide is a distinctive and final part in CuAAC reaction which has kinetic importance such that it can even affect the product distribution. In the context of this study, the protonation mechanism of copper-triazolide was investigated with quantum mechanical calculations to have a deeper understanding of the mechanism. In aprotic conditions where the alkyne is considered as proton donor, the key finding of DFT calculations performed in this study is that the activation energy barrier for the protonation step is greater than the cycloaddition step. In the absence of a strong proton donor the final protonation step is coupled with the alkyne deprotonation step in the catalytic cycle, which slows down the reaction. A conceivable pathway for acetic acid promoted CuAAC reaction on the basis of experimental and computational studies was also sought. With acetate as ligand, cycloaddition is a facile reaction and the energetics shows that it speeds up the cycloaddition step. Acetic acid in CuAAC reaction provides proton for the final protonation step in the catalytic cycle, decouples the protonation/deprotonation step by acting as a strong proton donor in the last step and facilitates protonation. The energetics presented herein are in accordance with the experimental proposals on rate-determining step in aprotic conditions and decreased reaction times obtained in the experiments in the presence of acetic acid.
{"title":"Mechanism of CuAAC reaction: In acetic acid and aprotic conditions","authors":"Cihan Özen, Nurcan Şenyurt Tüzün","doi":"10.1016/j.molcata.2016.11.010","DOIUrl":"https://doi.org/10.1016/j.molcata.2016.11.010","url":null,"abstract":"<div><p>Protonation of copper-triazolide is a distinctive and final part in CuAAC reaction which has kinetic importance such that it can even affect the product distribution. In the context of this study, the protonation mechanism of copper-triazolide was investigated with quantum mechanical calculations to have a deeper understanding of the mechanism. In aprotic conditions where the alkyne is considered as proton donor, the key finding of DFT calculations performed in this study is that the activation energy barrier for the protonation step is greater than the cycloaddition step. In the absence of a strong proton donor the final protonation step is coupled with the alkyne deprotonation step in the catalytic cycle, which slows down the reaction. A conceivable pathway for acetic acid promoted CuAAC reaction on the basis of experimental and computational studies was also sought. With acetate as ligand, cycloaddition is a facile reaction and the energetics shows that it speeds up the cycloaddition step. Acetic acid in CuAAC reaction provides proton for the final protonation step in the catalytic cycle, decouples the protonation/deprotonation step by acting as a strong proton donor in the last step and facilitates protonation. The energetics presented herein are in accordance with the experimental proposals on rate-determining step in aprotic conditions and decreased reaction times obtained in the experiments in the presence of acetic acid.</p></div>","PeriodicalId":370,"journal":{"name":"Journal of Molecular Catalysis A: Chemical","volume":"426 ","pages":"Pages 150-157"},"PeriodicalIF":5.062,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.molcata.2016.11.010","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2391733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-01DOI: 10.1016/j.molcata.2016.06.027
Moumita Mondal, Joyanta Choudhury
A simple and efficient CH activation catalyst was identified through a model structure-activity screening applied to a noncooperative, nonsymmetric bimetallic palladium(II)-N-heterocyclic carbene complex. Mechanistic studies based on kinetics and DOSY NMR spectroscopy provided the origin of the higher efficiency of the identified catalyst.
{"title":"Structure–activity comparison in palladium–N–heterocyclic carbene (NHC) catalyzed arene CH activation- functionalization","authors":"Moumita Mondal, Joyanta Choudhury","doi":"10.1016/j.molcata.2016.06.027","DOIUrl":"https://doi.org/10.1016/j.molcata.2016.06.027","url":null,"abstract":"<div><p>A simple and efficient C<img>H activation catalyst was identified through a model structure-activity screening applied to a noncooperative, nonsymmetric bimetallic palladium(II)-N-heterocyclic carbene complex. Mechanistic studies based on kinetics and DOSY NMR spectroscopy provided the origin of the higher efficiency of the identified catalyst.</p></div>","PeriodicalId":370,"journal":{"name":"Journal of Molecular Catalysis A: Chemical","volume":"426 ","pages":"Pages 451-457"},"PeriodicalIF":5.062,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.molcata.2016.06.027","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2595831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-01DOI: 10.1016/j.molcata.2016.07.002
Katherine D. Lavoie, Bryan E. Frauhiger, Peter S. White, Joseph L. Templeton
Scorpionate ligands provide the benefit of hemilability while minimizing complete dissociation of the ligand. Previous investigations into Tp′PtLnXm complexes [Tp′ = hydridotris(3,5-dimethylpyrazolyl)borate] revealed the importance of hemilability as the Tp′ ligand facilitates Pt(II/IV) interconversions. Here we discuss the synthesis and metalation of a series of asymmetric scorpionate ligands bearing two pyrazolyl rings and one triazolyl ring. In addition to utilizing triazole donor arms with differing substituents, we also compare octahedral structures of Pt(IV) complexes with P = O and CH and BH caps at the pole of the facial tridentate umbrella. Oxidation from Pt(II) to Pt(IV) with electrophilic reagents, simple acids and acid chlorides, leads to isomers in some cases, and the binding properties of the various donor arms dictate the stereochemistry of the products. Investigations into the reactivity of heteroscorpionate tridentate ligands bound to platinum(II) led to CCl activation reactions with methylene chloride and 1,2-dichloroethane. Isolation of a dinuclear platinum complex bridged by an ethylene unit produced an unusual proton NMR AA′XX′ pattern in the 1H NMR spectrum due to chirality at each platinum center.
{"title":"Syntheses of bispyrazolyl monotriazolyl heteroscorpionate platinum(IV) complexes including an unusual Pt-CH2CH2-Pt bridge","authors":"Katherine D. Lavoie, Bryan E. Frauhiger, Peter S. White, Joseph L. Templeton","doi":"10.1016/j.molcata.2016.07.002","DOIUrl":"https://doi.org/10.1016/j.molcata.2016.07.002","url":null,"abstract":"<div><p>Scorpionate ligands provide the benefit of hemilability while minimizing complete dissociation of the ligand. Previous investigations into Tp′PtL<sub>n</sub>X<sub>m</sub> complexes [Tp′<!--> <!-->=<!--> <!-->hydridotris(3,5-dimethylpyrazolyl)borate] revealed the importance of hemilability as the Tp′ ligand facilitates Pt(II/IV) interconversions. Here we discuss the synthesis and metalation of a series of asymmetric scorpionate ligands bearing two pyrazolyl rings and one triazolyl ring. In addition to utilizing triazole donor arms with differing substituents, we also compare octahedral structures of Pt(IV) complexes with P<!--> <!-->=<!--> <!-->O and C<img>H and B<img>H caps at the pole of the facial tridentate umbrella. Oxidation from Pt(II) to Pt(IV) with electrophilic reagents, simple acids and acid chlorides, leads to isomers in some cases, and the binding properties of the various donor arms dictate the stereochemistry of the products. Investigations into the reactivity of heteroscorpionate tridentate ligands bound to platinum(II) led to C<img>Cl activation reactions with methylene chloride and 1,2-dichloroethane. Isolation of a dinuclear platinum complex bridged by an ethylene unit produced an unusual proton NMR AA′XX′ pattern in the <sup>1</sup>H NMR spectrum due to chirality at each platinum center.</p></div>","PeriodicalId":370,"journal":{"name":"Journal of Molecular Catalysis A: Chemical","volume":"426 ","pages":"Pages 474-489"},"PeriodicalIF":5.062,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.molcata.2016.07.002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2171630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}