首页 > 最新文献

Mathematical Modelling of Engineering Problems最新文献

英文 中文
Enhancing Compressive Strength of Sulfate-Rich Concrete Using Electromagnetic Fields 利用电磁场提高富硫酸盐混凝土的抗压强度
Q3 Engineering Pub Date : 2024-03-28 DOI: 10.18280/mmep.110313
Alaa K. Abdullah, Samer Almashhadi
{"title":"Enhancing Compressive Strength of Sulfate-Rich Concrete Using Electromagnetic Fields","authors":"Alaa K. Abdullah, Samer Almashhadi","doi":"10.18280/mmep.110313","DOIUrl":"https://doi.org/10.18280/mmep.110313","url":null,"abstract":"","PeriodicalId":37338,"journal":{"name":"Mathematical Modelling of Engineering Problems","volume":"137 14","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140369455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Energy-Aware Cluster Head Selection and Optimal Route Selection Algorithm for Maximizing Network Lifetime in MANETs 城域网中实现网络寿命最大化的能量感知簇头选择和最优路由选择算法
Q3 Engineering Pub Date : 2024-03-28 DOI: 10.18280/mmep.110308
Venkatesh Devarayasamudram, Rakesh Chandrashekar, Chandra Mohan Chetla, Kumar Raja Depa Ramachandraiah, Purushotham Nimmala, Singaravelan Arumugam
{"title":"An Energy-Aware Cluster Head Selection and Optimal Route Selection Algorithm for Maximizing Network Lifetime in MANETs","authors":"Venkatesh Devarayasamudram, Rakesh Chandrashekar, Chandra Mohan Chetla, Kumar Raja Depa Ramachandraiah, Purushotham Nimmala, Singaravelan Arumugam","doi":"10.18280/mmep.110308","DOIUrl":"https://doi.org/10.18280/mmep.110308","url":null,"abstract":"","PeriodicalId":37338,"journal":{"name":"Mathematical Modelling of Engineering Problems","volume":"119 27","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140370186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical Study on the Impact Response of Steel Beams with Large Web Openings: Investigating Key Parameters 大腹板开孔钢梁冲击响应的数值研究:关键参数研究
Q3 Engineering Pub Date : 2024-03-28 DOI: 10.18280/mmep.110305
Maryam Jebur Al-Sultan, A. Al-Rifaie
{"title":"Numerical Study on the Impact Response of Steel Beams with Large Web Openings: Investigating Key Parameters","authors":"Maryam Jebur Al-Sultan, A. Al-Rifaie","doi":"10.18280/mmep.110305","DOIUrl":"https://doi.org/10.18280/mmep.110305","url":null,"abstract":"","PeriodicalId":37338,"journal":{"name":"Mathematical Modelling of Engineering Problems","volume":"88 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140371153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unreliable Multi Server Retrial Queueing System with Reneging and Diverse Outgoing Services 不可靠的多服务器重审队列系统(带拒绝和多样化出站服务
Q3 Engineering Pub Date : 2024-03-28 DOI: 10.18280/mmep.110301
Saravanan Vadivel, Poongothai Venugopal, Godhandaraman Pakkirisamy
{"title":"Unreliable Multi Server Retrial Queueing System with Reneging and Diverse Outgoing Services","authors":"Saravanan Vadivel, Poongothai Venugopal, Godhandaraman Pakkirisamy","doi":"10.18280/mmep.110301","DOIUrl":"https://doi.org/10.18280/mmep.110301","url":null,"abstract":"","PeriodicalId":37338,"journal":{"name":"Mathematical Modelling of Engineering Problems","volume":"7 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140372539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Schizophrenia Patient Classification with Long Short-Term Memory Analysis of Electroencephalography Signals 利用脑电信号的长短期记忆分析进行精神分裂症患者分类
Q3 Engineering Pub Date : 2024-03-28 DOI: 10.18280/mmep.110325
Fikri Badru Salam, D. Utari
{"title":"Schizophrenia Patient Classification with Long Short-Term Memory Analysis of Electroencephalography Signals","authors":"Fikri Badru Salam, D. Utari","doi":"10.18280/mmep.110325","DOIUrl":"https://doi.org/10.18280/mmep.110325","url":null,"abstract":"","PeriodicalId":37338,"journal":{"name":"Mathematical Modelling of Engineering Problems","volume":"11 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140373490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DOE-ANOVA Analysis to Estimate the Effect of Ambient Temperature, Pressure and Humidity on Surface Wind Speed 通过 DOE-ANOVA 分析估计环境温度、压力和湿度对地面风速的影响
Q3 Engineering Pub Date : 2024-03-28 DOI: 10.18280/mmep.110309
Samuel Vega-Zuñiga, J. Rueda-Bayona, Adalberto Ospino-Castro
{"title":"DOE-ANOVA Analysis to Estimate the Effect of Ambient Temperature, Pressure and Humidity on Surface Wind Speed","authors":"Samuel Vega-Zuñiga, J. Rueda-Bayona, Adalberto Ospino-Castro","doi":"10.18280/mmep.110309","DOIUrl":"https://doi.org/10.18280/mmep.110309","url":null,"abstract":"","PeriodicalId":37338,"journal":{"name":"Mathematical Modelling of Engineering Problems","volume":"58 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140368969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing Energy Consumption in Buildings: Intelligent Power Management Through Machine Learning 优化建筑能耗:通过机器学习实现智能电源管理
Q3 Engineering Pub Date : 2024-03-28 DOI: 10.18280/mmep.110321
M. M. Talib, M. Croock
In the realm of energy conservation, managing power consumption within buildings emerges as a pivotal challenge. This study introduces sophisticated models that optimize energy usage by intelligently managing power distribution in various zones of a building. To achieve this, four machine learning classifiers, Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbor (KNN) algorithm, and Naive Bayes (NB), were employed. These classifiers were integrated with feature reduction techniques, namely Boruta and Principal Component Analysis (PCA), to diminish model complexity. The study delineates three distinct power management strategies: Full, Selected, and Shutdown. The effectiveness of these models was evaluated using a dataset obtained from a building's energy consumption measurements. A comparative analysis revealed that the integration of the RF classifier with the Boruta feature reduction method significantly excelled, achieving a classification accuracy of 98%. Additionally, this combination demonstrated an execution time of merely 0.4549 seconds. The findings of this research not only underscore the efficacy of combining specific machine learning classifiers with feature reduction techniques but also highlight the potential of such integrations in optimizing energy consumption in building environments. This approach paves the way for more energy-efficient and sustainable building management practices.
在节能领域,管理建筑物内的电力消耗是一项关键挑战。本研究引入了复杂的模型,通过智能管理建筑物各区域的电力分配来优化能源使用。为此,研究人员采用了四种机器学习分类器,即随机森林(RF)、支持向量机(SVM)、K-最近邻(KNN)算法和奈维贝叶斯(NB)。这些分类器与特征缩减技术(即 Boruta 和主成分分析 (PCA))相结合,以降低模型的复杂性。研究划分了三种不同的电源管理策略:完全、选定和关闭。这些模型的有效性利用从建筑物能耗测量中获得的数据集进行了评估。对比分析表明,射频分类器与 Boruta 特征缩减方法的集成效果显著,分类准确率达到 98%。此外,这种组合的执行时间仅为 0.4549 秒。这项研究的结果不仅强调了将特定机器学习分类器与特征缩减技术相结合的功效,还凸显了这种集成在优化建筑环境能耗方面的潜力。这种方法为更节能、更可持续的建筑管理实践铺平了道路。
{"title":"Optimizing Energy Consumption in Buildings: Intelligent Power Management Through Machine Learning","authors":"M. M. Talib, M. Croock","doi":"10.18280/mmep.110321","DOIUrl":"https://doi.org/10.18280/mmep.110321","url":null,"abstract":"In the realm of energy conservation, managing power consumption within buildings emerges as a pivotal challenge. This study introduces sophisticated models that optimize energy usage by intelligently managing power distribution in various zones of a building. To achieve this, four machine learning classifiers, Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbor (KNN) algorithm, and Naive Bayes (NB), were employed. These classifiers were integrated with feature reduction techniques, namely Boruta and Principal Component Analysis (PCA), to diminish model complexity. The study delineates three distinct power management strategies: Full, Selected, and Shutdown. The effectiveness of these models was evaluated using a dataset obtained from a building's energy consumption measurements. A comparative analysis revealed that the integration of the RF classifier with the Boruta feature reduction method significantly excelled, achieving a classification accuracy of 98%. Additionally, this combination demonstrated an execution time of merely 0.4549 seconds. The findings of this research not only underscore the efficacy of combining specific machine learning classifiers with feature reduction techniques but also highlight the potential of such integrations in optimizing energy consumption in building environments. This approach paves the way for more energy-efficient and sustainable building management practices.","PeriodicalId":37338,"journal":{"name":"Mathematical Modelling of Engineering Problems","volume":"110 22","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140370404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient Technologies for Harvesting and Reutilizing Logging Residues in Russia: A Sustainable Forestry Approach 俄罗斯采伐和再利用伐木剩余物的高效技术:可持续林业方法
Q3 Engineering Pub Date : 2024-03-28 DOI: 10.18280/mmep.110319
Ol'ga Kunickaya, Michael Zyryanov, Sergey Medvedev, A. Mokhirev, Anastasia Spiridonova, Pavel Perfiliev, Aleksei Teppoev
{"title":"Efficient Technologies for Harvesting and Reutilizing Logging Residues in Russia: A Sustainable Forestry Approach","authors":"Ol'ga Kunickaya, Michael Zyryanov, Sergey Medvedev, A. Mokhirev, Anastasia Spiridonova, Pavel Perfiliev, Aleksei Teppoev","doi":"10.18280/mmep.110319","DOIUrl":"https://doi.org/10.18280/mmep.110319","url":null,"abstract":"","PeriodicalId":37338,"journal":{"name":"Mathematical Modelling of Engineering Problems","volume":"109 23","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140370506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artificial Butterfly Optimizer Based Two-Layer Convolutional Neural Network with Polarized Attention Mechanism for Human Activity Recognition 基于人工蝴蝶优化器的两层卷积神经网络与极化注意力机制在人类活动识别中的应用
Q3 Engineering Pub Date : 2024-03-28 DOI: 10.18280/mmep.110306
Naga Jagadesh Bommagani, Asha Venkataramana, Rashmi Vemulapalli, Tejesh Reddy Singasani, A. Pani, Manjunatha Basavannappa Challageri, Saikumar Kayam
{"title":"Artificial Butterfly Optimizer Based Two-Layer Convolutional Neural Network with Polarized Attention Mechanism for Human Activity Recognition","authors":"Naga Jagadesh Bommagani, Asha Venkataramana, Rashmi Vemulapalli, Tejesh Reddy Singasani, A. Pani, Manjunatha Basavannappa Challageri, Saikumar Kayam","doi":"10.18280/mmep.110306","DOIUrl":"https://doi.org/10.18280/mmep.110306","url":null,"abstract":"","PeriodicalId":37338,"journal":{"name":"Mathematical Modelling of Engineering Problems","volume":"113 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140370773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Techno-Economic Modeling of Hybrid PV-Hydroelectric Generator Systems in Semarang 三宝垄光伏-水电混合发电机系统的技术经济建模
Q3 Engineering Pub Date : 2024-03-28 DOI: 10.18280/mmep.110323
M. S. Mauludin, S. D. Prasetyo, N. F. Alfaiz, Zainal Arifin
{"title":"Techno-Economic Modeling of Hybrid PV-Hydroelectric Generator Systems in Semarang","authors":"M. S. Mauludin, S. D. Prasetyo, N. F. Alfaiz, Zainal Arifin","doi":"10.18280/mmep.110323","DOIUrl":"https://doi.org/10.18280/mmep.110323","url":null,"abstract":"","PeriodicalId":37338,"journal":{"name":"Mathematical Modelling of Engineering Problems","volume":"14 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140371828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Mathematical Modelling of Engineering Problems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1