首页 > 最新文献

Stochastics and Quality Control最新文献

英文 中文
Bootstrap Lower Confidence Limits of Superstructure Process Capability Indices for Esscher-Transformed Laplace Distribution esscher -变换拉普拉斯分布下上层建筑过程能力指标的自举下限
Q3 Mathematics Pub Date : 2017-01-01 DOI: 10.1515/eqc-2017-0010
Sebastian George, Ajitha Sasi
Abstract This article is a comparative study between the parametric asymptotic lower confidence limits and bootstrap lower confidence limits for the basic quantile based process capability indices based on the unified super-structure C N p ⁢ ( u , v ) {C_{N_{p}}(u,v)} when the distribution of the quality characteristic follows an asymmetric non-normal distribution. We illustrate this method when the distribution of the quality characteristic is a member of the family of Esscher-transformed Laplace models introduced by S. George and D. George [11]. We obtain the bias corrected and accelerated (BCa) bootstrap confidence intervals of C N p ⁢ ( u , v ) {C_{N_{p}}(u,v)} , which provide lower confidence intervals with coverage probability nearer to the nominal value compared to the asymptotic confidence intervals. We conclude that for asymmetric and peaked processes, the BCa confidence interval is a better alternative compared to the usual confidence intervals under the assumption that the quality characteristic follows a Gaussian type distribution. Numerical examples are given based on some real data.
摘要本文比较研究了基于统一超结构C N p _ (u,v) {C_{N_{p}}(u,v)}的质量特性服从非对称非正态分布时,基于基本分位数的过程能力指标的参数渐近置信下限与自举置信下限。当质量特征的分布是S. George和D. George[11]引入的esscher变换拉普拉斯模型族的成员时,我们说明了这种方法。我们得到了C N p _ (u,v) {C_{N_{p}}(u,v)}的偏差校正和加速(BCa)自助置信区间,与渐近置信区间相比,它提供了更低的置信区间,覆盖概率更接近标称值。我们得出结论,对于非对称和峰值过程,在质量特征遵循高斯型分布的假设下,与通常的置信区间相比,BCa置信区间是更好的选择。根据实际数据给出了数值算例。
{"title":"Bootstrap Lower Confidence Limits of Superstructure Process Capability Indices for Esscher-Transformed Laplace Distribution","authors":"Sebastian George, Ajitha Sasi","doi":"10.1515/eqc-2017-0010","DOIUrl":"https://doi.org/10.1515/eqc-2017-0010","url":null,"abstract":"Abstract This article is a comparative study between the parametric asymptotic lower confidence limits and bootstrap lower confidence limits for the basic quantile based process capability indices based on the unified super-structure C N p ⁢ ( u , v ) {C_{N_{p}}(u,v)} when the distribution of the quality characteristic follows an asymmetric non-normal distribution. We illustrate this method when the distribution of the quality characteristic is a member of the family of Esscher-transformed Laplace models introduced by S. George and D. George [11]. We obtain the bias corrected and accelerated (BCa) bootstrap confidence intervals of C N p ⁢ ( u , v ) {C_{N_{p}}(u,v)} , which provide lower confidence intervals with coverage probability nearer to the nominal value compared to the asymptotic confidence intervals. We conclude that for asymmetric and peaked processes, the BCa confidence interval is a better alternative compared to the usual confidence intervals under the assumption that the quality characteristic follows a Gaussian type distribution. Numerical examples are given based on some real data.","PeriodicalId":37499,"journal":{"name":"Stochastics and Quality Control","volume":"71 1","pages":"87 - 98"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86611477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Exponentiated Generalized-G Poisson Family of Distributions 指数型广义g泊松分布族
Q3 Mathematics Pub Date : 1900-01-01 DOI: 10.1515/eqc-2017-0004
G. Aryal, H. Yousof
In this article we propose and study a new family of distributions which is defined by using the genesis of the truncated Poisson distribution and the exponentiated generalized-G distribution. Some mathematical properties of the new family including ordinary and incomplete moments, quantile and generating functions, mean deviations, order statistics and their moments, reliability and Shannon entropy are derived. Estimation of the parameters using the method of maximum likelihood is discussed. Although this generalization technique can be used to generalize many other distributions, in this study we present only two special models. The importance and flexibility of the new family is exemplified using real world data.
摘要利用截断泊松分布和指数广义g分布的起源,提出并研究了一类新的分布。给出了新家族的一些数学性质,包括普通矩和不完全矩、分位数函数和生成函数、平均偏差、阶统计量及其矩、可靠度和香农熵。讨论了用极大似然法估计参数的方法。虽然这种泛化技术可以用来泛化许多其他分布,但在本研究中,我们只提出了两个特殊的模型。新家庭的重要性和灵活性用现实世界的数据来举例说明。
{"title":"The Exponentiated Generalized-G Poisson Family of Distributions","authors":"G. Aryal, H. Yousof","doi":"10.1515/eqc-2017-0004","DOIUrl":"https://doi.org/10.1515/eqc-2017-0004","url":null,"abstract":"In this article we propose and study a new family of distributions which is defined by using the genesis of the truncated Poisson distribution and the exponentiated generalized-G distribution. Some mathematical properties of the new family including ordinary and incomplete moments, quantile and generating functions, mean deviations, order statistics and their moments, reliability and Shannon entropy are derived. Estimation of the parameters using the method of maximum likelihood is discussed. Although this generalization technique can be used to generalize many other distributions, in this study we present only two special models. The importance and flexibility of the new family is exemplified using real world data.","PeriodicalId":37499,"journal":{"name":"Stochastics and Quality Control","volume":"4 1","pages":"23 - 7"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80348004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 70
期刊
Stochastics and Quality Control
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1