Pub Date : 2023-04-18DOI: 10.3390/galaxies11020059
E. Vasiliev
We review the recent theoretical and observational developments concerning the interaction of the Large Magellanic Cloud (LMC) with the Milky Way and its neighbourhood. An emerging picture is that the LMC is a fairly massive companion (10–20% of the Milky Way mass) and just passed the pericentre of its orbit, likely for the first time. The gravitational perturbation caused by the LMC is manifested at different levels. The most immediate effect is the deflection of orbits of stars, stellar streams, or satellite galaxies passing in the vicinity of the LMC. Less well known but equally important is the displacement (reflex motion) of central regions of the Milky Way about the centre of mass of both galaxies. Since the Milky Way is not a rigid body, this displacement varies with the distance from the LMC, and as a result, the Galaxy is deformed and its outer regions (beyond a few tens kpc) acquire a net velocity with respect to its centre. These phenomena need to be taken into account at the level of precision warranted by current and future observational data, and improvements on the modelling side are also necessary for an adequate interpretation of these data.
{"title":"The Effect of the LMC on the Milky Way System","authors":"E. Vasiliev","doi":"10.3390/galaxies11020059","DOIUrl":"https://doi.org/10.3390/galaxies11020059","url":null,"abstract":"We review the recent theoretical and observational developments concerning the interaction of the Large Magellanic Cloud (LMC) with the Milky Way and its neighbourhood. An emerging picture is that the LMC is a fairly massive companion (10–20% of the Milky Way mass) and just passed the pericentre of its orbit, likely for the first time. The gravitational perturbation caused by the LMC is manifested at different levels. The most immediate effect is the deflection of orbits of stars, stellar streams, or satellite galaxies passing in the vicinity of the LMC. Less well known but equally important is the displacement (reflex motion) of central regions of the Milky Way about the centre of mass of both galaxies. Since the Milky Way is not a rigid body, this displacement varies with the distance from the LMC, and as a result, the Galaxy is deformed and its outer regions (beyond a few tens kpc) acquire a net velocity with respect to its centre. These phenomena need to be taken into account at the level of precision warranted by current and future observational data, and improvements on the modelling side are also necessary for an adequate interpretation of these data.","PeriodicalId":37570,"journal":{"name":"Galaxies","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43346802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-12DOI: 10.3390/galaxies11020055
O. Maryeva, P. Németh, S. Karpov
The Kepler and TESS space missions significantly expanded our knowledge of what types of stars display flaring activity by recording a vast amount of super-flares from solar-like stars, as well as detecting flares from hotter stars of A-F spectral types. Currently, we know that flaring occurs in the stars as hot as B-type ones. However, the structures of atmospheres of hot B-A stars crucially differ from the ones of late types, and thus the occurrence of flaring in B-A type stars requires some extension of our theoretical views of flare formation and therefore a detailed study of individual objects. Here we present the results of our spectral and photometric study of HD 36030, which is a B9 V star with flares detected by the TESS satellite. The spectra we acquired suggest that the star is in a binary system with a low-mass secondary component, but the light curve lacks any signs of periodic variability related to orbital motion or surface magnetic fields. Because of that, we argue that the flares originate due to magnetic interaction between the components of the system.
{"title":"Revealing the Binarity of HD 36030—One of the Hottest Flare Stars","authors":"O. Maryeva, P. Németh, S. Karpov","doi":"10.3390/galaxies11020055","DOIUrl":"https://doi.org/10.3390/galaxies11020055","url":null,"abstract":"The Kepler and TESS space missions significantly expanded our knowledge of what types of stars display flaring activity by recording a vast amount of super-flares from solar-like stars, as well as detecting flares from hotter stars of A-F spectral types. Currently, we know that flaring occurs in the stars as hot as B-type ones. However, the structures of atmospheres of hot B-A stars crucially differ from the ones of late types, and thus the occurrence of flaring in B-A type stars requires some extension of our theoretical views of flare formation and therefore a detailed study of individual objects. Here we present the results of our spectral and photometric study of HD 36030, which is a B9 V star with flares detected by the TESS satellite. The spectra we acquired suggest that the star is in a binary system with a low-mass secondary component, but the light curve lacks any signs of periodic variability related to orbital motion or surface magnetic fields. Because of that, we argue that the flares originate due to magnetic interaction between the components of the system.","PeriodicalId":37570,"journal":{"name":"Galaxies","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43804690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-10DOI: 10.3390/galaxies11020054
J. Zorec
This review has two parts. The first one is devoted to the Barbier–Chalonge–Divan (BCD) spectrophotometric system, also known as the Paris spectral classification system. Although the BCD system has been applied and is still used for all stellar objects from O to F spectral types, the present account mainly concerns normal and ‘active’ B-type stars. The second part treats topics related to stellar rotation, considered one of the key phenomena determining the structure and evolution of stars. The first part is eminently observational. In contrast, the second part deals with observational aspects related to stellar rotation but also recalls some supporting or basic theoretical concepts that may help better understand the gains and shortcomings of today’s existent interpretation of stellar data.
{"title":"BCD Spectrophotometry and Rotation of Active B-Type Stars: Theory and Observations","authors":"J. Zorec","doi":"10.3390/galaxies11020054","DOIUrl":"https://doi.org/10.3390/galaxies11020054","url":null,"abstract":"This review has two parts. The first one is devoted to the Barbier–Chalonge–Divan (BCD) spectrophotometric system, also known as the Paris spectral classification system. Although the BCD system has been applied and is still used for all stellar objects from O to F spectral types, the present account mainly concerns normal and ‘active’ B-type stars. The second part treats topics related to stellar rotation, considered one of the key phenomena determining the structure and evolution of stars. The first part is eminently observational. In contrast, the second part deals with observational aspects related to stellar rotation but also recalls some supporting or basic theoretical concepts that may help better understand the gains and shortcomings of today’s existent interpretation of stellar data.","PeriodicalId":37570,"journal":{"name":"Galaxies","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46679330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-06DOI: 10.3390/galaxies11020053
Xiaolong Yang, J. Yang
We study radio and X-ray emissions from intermediate-mass black holes (IMBHs) and explore the unified model for accretion and ejection processes. The radio band survey of IMBH (candidate) hosted galaxies indicates that only a small fraction (∼0.6%) of them are radio-band active. In addition, very long baseline interferometry observations reveal parsec-scale radio emission of IMBHs, further resulting in a lower fraction of actively ejecting objects (radio emission is produced by IMBHs other than hosts), which is consistent with a long quiescent state in the evolution cycle of IMBHs. Most (75%, i.e., 3 out of 4 samples according to a recent mini-survey) of the radio-emitting IMBHs are associated with radio relics and there is also evidence of dual radio blobs from episodic ejecting phases. Taking the radio emission and the corresponding core X-ray emission of IMBH, we confirm a universal fundamental plane relation (FMP) of black hole activity. Furthermore, state transitions can be inferred by comparing a few cases in XRBs and IMBHs in FMP, i.e., both radio luminosity and emission regions evolve along these state transitions. These signatures and evidence suggest an analogy among all kinds of accretion systems which span from stellar mass to supermassive black holes, hinting at unified accretion and ejection physics. To validate the unified model, we explore the correlation between the scale of outflows (corresponding to ejection powers) and the masses of central engines; it shows that the largest scale of outflows LS^out follows a power-law correlation with the masses of accretors Mcore, i.e., logLS^out=(0.73±0.01)logMcore−(3.34±0.10). In conclusion, this work provides evidence to support the claim that the ejection (and accretion) process behaves as scale-invariant and their power is regulated by the masses of accretors.
{"title":"Intermediate-Mass Black Holes: The Essential Population to Explore the Unified Model for Accretion and Ejection Processes","authors":"Xiaolong Yang, J. Yang","doi":"10.3390/galaxies11020053","DOIUrl":"https://doi.org/10.3390/galaxies11020053","url":null,"abstract":"We study radio and X-ray emissions from intermediate-mass black holes (IMBHs) and explore the unified model for accretion and ejection processes. The radio band survey of IMBH (candidate) hosted galaxies indicates that only a small fraction (∼0.6%) of them are radio-band active. In addition, very long baseline interferometry observations reveal parsec-scale radio emission of IMBHs, further resulting in a lower fraction of actively ejecting objects (radio emission is produced by IMBHs other than hosts), which is consistent with a long quiescent state in the evolution cycle of IMBHs. Most (75%, i.e., 3 out of 4 samples according to a recent mini-survey) of the radio-emitting IMBHs are associated with radio relics and there is also evidence of dual radio blobs from episodic ejecting phases. Taking the radio emission and the corresponding core X-ray emission of IMBH, we confirm a universal fundamental plane relation (FMP) of black hole activity. Furthermore, state transitions can be inferred by comparing a few cases in XRBs and IMBHs in FMP, i.e., both radio luminosity and emission regions evolve along these state transitions. These signatures and evidence suggest an analogy among all kinds of accretion systems which span from stellar mass to supermassive black holes, hinting at unified accretion and ejection physics. To validate the unified model, we explore the correlation between the scale of outflows (corresponding to ejection powers) and the masses of central engines; it shows that the largest scale of outflows LS^out follows a power-law correlation with the masses of accretors Mcore, i.e., logLS^out=(0.73±0.01)logMcore−(3.34±0.10). In conclusion, this work provides evidence to support the claim that the ejection (and accretion) process behaves as scale-invariant and their power is regulated by the masses of accretors.","PeriodicalId":37570,"journal":{"name":"Galaxies","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47657667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-23DOI: 10.3390/galaxies11020052
P. Marziani, S. Panda, Alice Deconto Machado, A. Olmo
The optical and UV properties of radio-quiet (RQ) and radio-loud (RL, relativistically “jetted”) active galactic nuclei (AGN) are known to differ markedly; however, it is still unclear what is due to a sample selection and what is associated with intrinsic differences in the inner workings of their emitting regions. Chemical composition is an important parameter related to the trends of the quasar main sequence. Recent works suggest that in addition to physical properties such as density, column density, and ionization level, strong Feii emitters require very high metal content. Little is known, however, about the chemical composition of jetted radio-loud sources. In this short note, we present a pilot analysis of the chemical composition of low-z radio-loud and radio-quiet quasars. Optical and UV spectra from ground and space were combined to allow for precise measurements of metallicity-sensitive diagnostic ratios. The comparison between radio-quiet and radio-loud was carried out for sources in the same domain of the Eigenvector 1/main sequence parameter space. Arrays of dedicated photo-ionization simulations with the input of appropriate spectral energy distributions indicate that metallicity is sub-solar for RL AGN, and slightly sub-solar or around solar for RQ AGN. The metal content of the broad line-emitting region likely reflects a similar enrichment story for both classes of AGN not involving recent circum-nuclear or nuclear starbursts.
{"title":"Metal Content in Relativistically Jetted and Radio-Quiet Quasars in the Main Sequence Context","authors":"P. Marziani, S. Panda, Alice Deconto Machado, A. Olmo","doi":"10.3390/galaxies11020052","DOIUrl":"https://doi.org/10.3390/galaxies11020052","url":null,"abstract":"The optical and UV properties of radio-quiet (RQ) and radio-loud (RL, relativistically “jetted”) active galactic nuclei (AGN) are known to differ markedly; however, it is still unclear what is due to a sample selection and what is associated with intrinsic differences in the inner workings of their emitting regions. Chemical composition is an important parameter related to the trends of the quasar main sequence. Recent works suggest that in addition to physical properties such as density, column density, and ionization level, strong Feii emitters require very high metal content. Little is known, however, about the chemical composition of jetted radio-loud sources. In this short note, we present a pilot analysis of the chemical composition of low-z radio-loud and radio-quiet quasars. Optical and UV spectra from ground and space were combined to allow for precise measurements of metallicity-sensitive diagnostic ratios. The comparison between radio-quiet and radio-loud was carried out for sources in the same domain of the Eigenvector 1/main sequence parameter space. Arrays of dedicated photo-ionization simulations with the input of appropriate spectral energy distributions indicate that metallicity is sub-solar for RL AGN, and slightly sub-solar or around solar for RQ AGN. The metal content of the broad line-emitting region likely reflects a similar enrichment story for both classes of AGN not involving recent circum-nuclear or nuclear starbursts.","PeriodicalId":37570,"journal":{"name":"Galaxies","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47619749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-22DOI: 10.3390/galaxies11020049
G. Giovannini, Yuzhu Cui, K. Hada, K. -H. Yi, H. Ro, B. Sohn, M. Takamura, Salvatore Buttaccio, F. D’Ammando, M. Giroletti, Y. Hagiwara, M. Kino, E. Kravchenko, G. Maccaferri, Alexey Melnikov, K. Niinuma, M. Orienti, K. Wajima, K. Akiyama, A. Doi, D. Byun, T. Hirota, M. Honma, T. Jung, H. Kobayashi, S. Koyama, A. Melis, C. Migoni, Y. Murata, H. Nagai, S. Sawada-Satoh, M. Stagni
We present here the East Asia to Italy Nearly Global VLBI (EATING VLBI) project. How this project started and the evolution of the international collaboration between Korean, Japanese, and Italian researchers to study compact sources with VLBI observations is reported. Problems related to the synchronization of the very different arrays and technical details of the telescopes involved are presented and discussed. The relatively high observation frequency (22 and 43 GHz) and the long baselines between Italy and East Asia produced high-resolution images. We present example images to demonstrate the typical performance of the EATING VLBI array. The results attracted international researchers and the collaboration is growing, now including Chinese and Russian stations. New in progress projects are discussed and future possibilities with a larger number of telescopes and a better frequency coverage are briefly discussed herein.
{"title":"The Past and Future of East Asia to Italy: Nearly Global VLBI","authors":"G. Giovannini, Yuzhu Cui, K. Hada, K. -H. Yi, H. Ro, B. Sohn, M. Takamura, Salvatore Buttaccio, F. D’Ammando, M. Giroletti, Y. Hagiwara, M. Kino, E. Kravchenko, G. Maccaferri, Alexey Melnikov, K. Niinuma, M. Orienti, K. Wajima, K. Akiyama, A. Doi, D. Byun, T. Hirota, M. Honma, T. Jung, H. Kobayashi, S. Koyama, A. Melis, C. Migoni, Y. Murata, H. Nagai, S. Sawada-Satoh, M. Stagni","doi":"10.3390/galaxies11020049","DOIUrl":"https://doi.org/10.3390/galaxies11020049","url":null,"abstract":"We present here the East Asia to Italy Nearly Global VLBI (EATING VLBI) project. How this project started and the evolution of the international collaboration between Korean, Japanese, and Italian researchers to study compact sources with VLBI observations is reported. Problems related to the synchronization of the very different arrays and technical details of the telescopes involved are presented and discussed. The relatively high observation frequency (22 and 43 GHz) and the long baselines between Italy and East Asia produced high-resolution images. We present example images to demonstrate the typical performance of the EATING VLBI array. The results attracted international researchers and the collaboration is growing, now including Chinese and Russian stations. New in progress projects are discussed and future possibilities with a larger number of telescopes and a better frequency coverage are briefly discussed herein.","PeriodicalId":37570,"journal":{"name":"Galaxies","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43431435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-22DOI: 10.3390/galaxies11020048
J. G. Coelho, R. D. dos Anjos
The era of multi-messenger astronomy has recently be inaugurated with pioneering experiments, theoretical interpretation, and models [...]
多信使天文学的时代最近以开创性的实验、理论解释和模型开启了[…]
{"title":"Challenges of This Century in High-Density Compact Objects, High-Energy Astrophysics, and Multi-Messenger Observations: Quo Vadis?","authors":"J. G. Coelho, R. D. dos Anjos","doi":"10.3390/galaxies11020048","DOIUrl":"https://doi.org/10.3390/galaxies11020048","url":null,"abstract":"The era of multi-messenger astronomy has recently be inaugurated with pioneering experiments, theoretical interpretation, and models [...]","PeriodicalId":37570,"journal":{"name":"Galaxies","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46702183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-22DOI: 10.3390/galaxies11020050
M. Khlopov, O. Lecian
If baryosynthesis is strongly nonhomogeneous, macroscopic regions with antibaryon excess can be created in the same process from which the baryonic matter is originated. This exotic possibility can become real, if the hints to the existence of antihelium component in cosmic rays are confirmed in the AMS02 experiment, indicating the existence of primordial antimatter objects in our Galaxy. Possible forms of such objects depend on the parameters of models of baryosynthesis and evolution of antimatter domains. We elaborate the formalism of analysis of evolution of antibaryon domain with the account for baryon-antibaryon annihilation at the domain borders and possible “Swiss cheese” structure of the domain structure. We pay special attention to evolution of various forms of high, very high and ultrahigh density antibaryon domains and deduce equations of their evolution in the expanding Universe. The proposed formalism will provide the creation of evolutionary scenarios, linking the possible forms and properties of antimatter bodies in our Galaxy to the mechanisms of nonhomogeneous baryosynthesis.
{"title":"The Formalism of Milky-Way Antimatter-Domains Evolution","authors":"M. Khlopov, O. Lecian","doi":"10.3390/galaxies11020050","DOIUrl":"https://doi.org/10.3390/galaxies11020050","url":null,"abstract":"If baryosynthesis is strongly nonhomogeneous, macroscopic regions with antibaryon excess can be created in the same process from which the baryonic matter is originated. This exotic possibility can become real, if the hints to the existence of antihelium component in cosmic rays are confirmed in the AMS02 experiment, indicating the existence of primordial antimatter objects in our Galaxy. Possible forms of such objects depend on the parameters of models of baryosynthesis and evolution of antimatter domains. We elaborate the formalism of analysis of evolution of antibaryon domain with the account for baryon-antibaryon annihilation at the domain borders and possible “Swiss cheese” structure of the domain structure. We pay special attention to evolution of various forms of high, very high and ultrahigh density antibaryon domains and deduce equations of their evolution in the expanding Universe. The proposed formalism will provide the creation of evolutionary scenarios, linking the possible forms and properties of antimatter bodies in our Galaxy to the mechanisms of nonhomogeneous baryosynthesis.","PeriodicalId":37570,"journal":{"name":"Galaxies","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48112215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-21DOI: 10.3390/galaxies11020056
E. H. Anders, M. G. Pedersen
The convective envelopes of solar-type stars and the convective cores of intermediate- and high-mass stars share boundaries with stable radiative zones. Through a host of processes we collectively refer to as “convective boundary mixing” (CBM), convection can drive efficient mixing in these nominally stable regions. In this review, we discuss the current state of CBM research in the context of main-sequence stars through three lenses. (1) We examine the most frequently implemented 1D prescriptions of CBM—exponential overshoot, step overshoot, and convective penetration—and we include a discussion of implementation degeneracies and how to convert between various prescriptions. (2) Next, we examine the literature of CBM from a fluid dynamical perspective, with a focus on three distinct processes: convective overshoot, entrainment, and convective penetration. (3) Finally, we discuss observational inferences regarding how much mixing should occur in the cores of intermediate- and high-mass stars as well as the implied constraints that these observations place on 1D CBM implementations. We conclude with a discussion of pathways forward for future studies to place better constraints on this difficult challenge in stellar evolution modeling.
{"title":"Convective Boundary Mixing in Main-Sequence Stars: Theory and Empirical Constraints","authors":"E. H. Anders, M. G. Pedersen","doi":"10.3390/galaxies11020056","DOIUrl":"https://doi.org/10.3390/galaxies11020056","url":null,"abstract":"The convective envelopes of solar-type stars and the convective cores of intermediate- and high-mass stars share boundaries with stable radiative zones. Through a host of processes we collectively refer to as “convective boundary mixing” (CBM), convection can drive efficient mixing in these nominally stable regions. In this review, we discuss the current state of CBM research in the context of main-sequence stars through three lenses. (1) We examine the most frequently implemented 1D prescriptions of CBM—exponential overshoot, step overshoot, and convective penetration—and we include a discussion of implementation degeneracies and how to convert between various prescriptions. (2) Next, we examine the literature of CBM from a fluid dynamical perspective, with a focus on three distinct processes: convective overshoot, entrainment, and convective penetration. (3) Finally, we discuss observational inferences regarding how much mixing should occur in the cores of intermediate- and high-mass stars as well as the implied constraints that these observations place on 1D CBM implementations. We conclude with a discussion of pathways forward for future studies to place better constraints on this difficult challenge in stellar evolution modeling.","PeriodicalId":37570,"journal":{"name":"Galaxies","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49311911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-21DOI: 10.3390/galaxies11020047
G. Couto, T. Storchi-Bergmann
Radio activity in AGN (Active Galactic Nuclei) produce feedback on the host galaxy via the impact of the relativistic jets on the circumnuclear gas. Although radio jets can reach up to several times the optical radius of the host galaxy, in this review we focus on the observation of the feedback deposited locally in the central region of the host galaxies, in the form of outflows due to the jet-gas interaction. We begin by discussing how galaxy mergers and interactions are the most favored scenario for triggering radio AGN after gas accretion to the nuclear supermassive black hole and star formation enhancement in the nuclear region, observed in particular in the most luminous sources. We then discuss observational signatures of the process of jet-gas coupling, in particular the resulting outflows and their effects on the host galaxy. These include the presence of shock signatures and the detection of outflows not only along the radio jet but perpendicular to it in many sources. Although most of the studies are done via the observation of ionized gas, molecular gas is also being increasingly observed in outflow, contributing to the bulk of the mass outflow rate. Even though most radio sources present outflow kinetic powers that do not reach 1%Lbol, and thus do not seem to provide an immediate impact on the host galaxy, they act to heat the ISM gas, preventing star formation, slowing the galaxy mass build-up process and limiting the stellar mass growth, in a “maintenance mode” feedback.
{"title":"The Interplay between Radio AGN Activity and Their Host Galaxies","authors":"G. Couto, T. Storchi-Bergmann","doi":"10.3390/galaxies11020047","DOIUrl":"https://doi.org/10.3390/galaxies11020047","url":null,"abstract":"Radio activity in AGN (Active Galactic Nuclei) produce feedback on the host galaxy via the impact of the relativistic jets on the circumnuclear gas. Although radio jets can reach up to several times the optical radius of the host galaxy, in this review we focus on the observation of the feedback deposited locally in the central region of the host galaxies, in the form of outflows due to the jet-gas interaction. We begin by discussing how galaxy mergers and interactions are the most favored scenario for triggering radio AGN after gas accretion to the nuclear supermassive black hole and star formation enhancement in the nuclear region, observed in particular in the most luminous sources. We then discuss observational signatures of the process of jet-gas coupling, in particular the resulting outflows and their effects on the host galaxy. These include the presence of shock signatures and the detection of outflows not only along the radio jet but perpendicular to it in many sources. Although most of the studies are done via the observation of ionized gas, molecular gas is also being increasingly observed in outflow, contributing to the bulk of the mass outflow rate. Even though most radio sources present outflow kinetic powers that do not reach 1%Lbol, and thus do not seem to provide an immediate impact on the host galaxy, they act to heat the ISM gas, preventing star formation, slowing the galaxy mass build-up process and limiting the stellar mass growth, in a “maintenance mode” feedback.","PeriodicalId":37570,"journal":{"name":"Galaxies","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49554418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}