Pub Date : 2024-02-27DOI: 10.1016/j.ncrna.2024.02.018
Rushil Kolipaka, Induja Magesh, M.R. Ashok Bharathy, S. Karthik, I. Saranya, N. Selvamurugan
Cells produce short single-stranded non-coding RNAs (ncRNAs) called microRNAs (miRNAs), which actively regulate gene expression at the posttranscriptional level. Several miRNAs have been observed to exert significant impacts on bone health and bone-related disorders. One of these, miR-124, is observed in bone microenvironments and is conserved across species. It affects bone cell growth and differentiation by activating different transcription factors and signaling pathways. In-depth functional analyses of miR-124 have revealed several physiological and pathological roles exerted through interactions with other ncRNAs. Deciphering these RNA-mediated signaling networks and pathways is essential for understanding the potential impacts of dysregulated miRNA functions on bone biology. In this review, we aim to provide a comprehensive analysis of miR-124's involvement in bone physiology and pathology. We highlight the importance of miR-124 in controlling transcription factors and signaling pathways that promote bone growth. This review reveals therapeutic implications for the treatment of bone-related diseases.
{"title":"A potential function for MicroRNA-124 in normal and pathological bone conditions","authors":"Rushil Kolipaka, Induja Magesh, M.R. Ashok Bharathy, S. Karthik, I. Saranya, N. Selvamurugan","doi":"10.1016/j.ncrna.2024.02.018","DOIUrl":"https://doi.org/10.1016/j.ncrna.2024.02.018","url":null,"abstract":"<div><p>Cells produce short single-stranded non-coding RNAs (ncRNAs) called microRNAs (miRNAs), which actively regulate gene expression at the posttranscriptional level. Several miRNAs have been observed to exert significant impacts on bone health and bone-related disorders. One of these, miR-124, is observed in bone microenvironments and is conserved across species. It affects bone cell growth and differentiation by activating different transcription factors and signaling pathways. In-depth functional analyses of miR-124 have revealed several physiological and pathological roles exerted through interactions with other ncRNAs. Deciphering these RNA-mediated signaling networks and pathways is essential for understanding the potential impacts of dysregulated miRNA functions on bone biology. In this review, we aim to provide a comprehensive analysis of miR-124's involvement in bone physiology and pathology. We highlight the importance of miR-124 in controlling transcription factors and signaling pathways that promote bone growth. This review reveals therapeutic implications for the treatment of bone-related diseases.</p></div>","PeriodicalId":37653,"journal":{"name":"Non-coding RNA Research","volume":"9 3","pages":"Pages 687-694"},"PeriodicalIF":5.0,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468054024000398/pdfft?md5=1c2daba052262528655248a4944e90cf&pid=1-s2.0-S2468054024000398-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140331018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-27DOI: 10.1016/j.ncrna.2024.02.009
Debasmita Naik, Arunasree M. Kalle
Cervical cancer, a leading global cause of female mortality, exhibits diverse molecular aberrations influencing gene expression and signaling pathways. Epigenetic factors, including histone deacetylases (HDACs) such as HDAC8 and HDAC6, along with microRNAs (miRNAs), play pivotal roles in cervical cancer progression. Recent investigations have unveiled miRNAs as potential regulators of HDACs, offering a promising therapeutic avenue. This study employed in-silico miRNA prediction, qRT-PCR co-expression studies, and Dual-Luciferase reporter assays to identify miRNAs governing HDAC8 and HDAC6 in HeLa, cervical cancer cells. Results pinpointed miR-497–3p and miR-324–3p as novel negative regulators of HDAC8 and HDAC6, respectively. Functional assays demonstrated that miR-497–3p overexpression in HeLa cells suppressed HDAC8, leading to increased acetylation of downstream targets p53 and α-tubulin. Similarly, miR-324–3p overexpression inhibited HDAC6 mRNA and protein expression, enhancing acetylation of Hsp90 and α-tubulin. Notably, inhibiting HDAC8 via miRNA overexpression correlated with reduced cell viability, diminished epithelial-to-mesenchymal transition (EMT), and increased microtubule bundle formation in HeLa cells. In conclusion, miR-497–3p and miR-324–3p emerge as novel negative regulators of HDAC8 and HDAC6, respectively, with potential therapeutic implications. Elevated expression of these miRNAs in cervical cancer cells holds promise for inhibiting metastasis, offering a targeted approach for intervention in cervical malignancy.
{"title":"MicroRNA-mediated epigenetic regulation of HDAC8 and HDAC6: Functional significance in cervical cancer","authors":"Debasmita Naik, Arunasree M. Kalle","doi":"10.1016/j.ncrna.2024.02.009","DOIUrl":"https://doi.org/10.1016/j.ncrna.2024.02.009","url":null,"abstract":"<div><p>Cervical cancer, a leading global cause of female mortality, exhibits diverse molecular aberrations influencing gene expression and signaling pathways. Epigenetic factors, including histone deacetylases (HDACs) such as HDAC8 and HDAC6, along with microRNAs (miRNAs), play pivotal roles in cervical cancer progression. Recent investigations have unveiled miRNAs as potential regulators of HDACs, offering a promising therapeutic avenue. This study employed in-silico miRNA prediction, qRT-PCR co-expression studies, and Dual-Luciferase reporter assays to identify miRNAs governing HDAC8 and HDAC6 in HeLa, cervical cancer cells. Results pinpointed miR-497–3p and miR-324–3p as novel negative regulators of HDAC8 and HDAC6, respectively. Functional assays demonstrated that miR-497–3p overexpression in HeLa cells suppressed HDAC8, leading to increased acetylation of downstream targets p53 and α-tubulin. Similarly, miR-324–3p overexpression inhibited HDAC6 mRNA and protein expression, enhancing acetylation of Hsp90 and α-tubulin. Notably, inhibiting HDAC8 via miRNA overexpression correlated with reduced cell viability, diminished epithelial-to-mesenchymal transition (EMT), and increased microtubule bundle formation in HeLa cells. In conclusion, miR-497–3p and miR-324–3p emerge as novel negative regulators of HDAC8 and HDAC6, respectively, with potential therapeutic implications. Elevated expression of these miRNAs in cervical cancer cells holds promise for inhibiting metastasis, offering a targeted approach for intervention in cervical malignancy.</p></div>","PeriodicalId":37653,"journal":{"name":"Non-coding RNA Research","volume":"9 3","pages":"Pages 732-743"},"PeriodicalIF":5.0,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468054024000301/pdfft?md5=5bb2be12cab45337a8e793b564186ea1&pid=1-s2.0-S2468054024000301-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140331063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-23DOI: 10.1016/j.ncrna.2024.02.011
Ozal Beylerli , Tatiana Ilyasova , Huaizhang Shi , Albert Sufianov
Meningiomas, characterized primarily as benign intracranial or spinal tumors, present distinctive challenges due to their variable clinical behavior, with certain cases exhibiting aggressive features linked to elevated morbidity and mortality. Despite their prevalence, the underlying molecular mechanisms governing the initiation and progression of meningiomas remain insufficiently understood. MicroRNAs (miRNAs), small endogenous non-coding RNAs orchestrating post-transcriptional gene expression, have garnered substantial attention in this context. They emerge as pivotal biomarkers and potential therapeutic targets, offering innovative avenues for managing meningiomas. Recent research delves into the intricate mechanisms by which miRNAs contribute to meningioma pathogenesis, unraveling the molecular complexities of this enigmatic tumor. Meningiomas, originating from arachnoid meningothelial cells and known for their gradual growth, constitute a significant portion of intracranial tumors. The clinical challenge lies in comprehending their progression, particularly factors associated with brain invasion and heightened recurrence rates, which remain elusive. This comprehensive review underscores the pivotal role of miRNAs, accentuating their potential to advance our comprehension of meningioma biology. Furthermore, it suggests promising directions for developing diagnostic biomarkers and therapeutic interventions, holding the promise of markedly improved patient outcomes in the face of this intricate and variable disease.
{"title":"MicroRNAs in meningiomas: Potential biomarkers and therapeutic targets","authors":"Ozal Beylerli , Tatiana Ilyasova , Huaizhang Shi , Albert Sufianov","doi":"10.1016/j.ncrna.2024.02.011","DOIUrl":"https://doi.org/10.1016/j.ncrna.2024.02.011","url":null,"abstract":"<div><p>Meningiomas, characterized primarily as benign intracranial or spinal tumors, present distinctive challenges due to their variable clinical behavior, with certain cases exhibiting aggressive features linked to elevated morbidity and mortality. Despite their prevalence, the underlying molecular mechanisms governing the initiation and progression of meningiomas remain insufficiently understood. MicroRNAs (miRNAs), small endogenous non-coding RNAs orchestrating post-transcriptional gene expression, have garnered substantial attention in this context. They emerge as pivotal biomarkers and potential therapeutic targets, offering innovative avenues for managing meningiomas. Recent research delves into the intricate mechanisms by which miRNAs contribute to meningioma pathogenesis, unraveling the molecular complexities of this enigmatic tumor. Meningiomas, originating from arachnoid meningothelial cells and known for their gradual growth, constitute a significant portion of intracranial tumors. The clinical challenge lies in comprehending their progression, particularly factors associated with brain invasion and heightened recurrence rates, which remain elusive. This comprehensive review underscores the pivotal role of miRNAs, accentuating their potential to advance our comprehension of meningioma biology. Furthermore, it suggests promising directions for developing diagnostic biomarkers and therapeutic interventions, holding the promise of markedly improved patient outcomes in the face of this intricate and variable disease.</p></div>","PeriodicalId":37653,"journal":{"name":"Non-coding RNA Research","volume":"9 3","pages":"Pages 641-648"},"PeriodicalIF":5.0,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468054024000325/pdfft?md5=68bc3e63ec71b098dce922775e16ea7c&pid=1-s2.0-S2468054024000325-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140328852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-23DOI: 10.1016/j.ncrna.2024.02.014
Ozal Beylerli , Huaizhang Shi , Sema Begliarzade , Alina Shumadalova , Tatiana Ilyasova , Albert Sufianov
Brain metastases represent a formidable challenge in cancer management, impacting a significant number of patients and contributing significantly to cancer-related mortality. Conventional diagnostic methods frequently fall short, underscoring the imperative for non-invasive alternatives. Non-coding RNAs (ncRNAs), specifically microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), present promising avenues for exploration. These ncRNAs exert influence over the prognosis and treatment resistance of brain metastases, offering valuable insights into underlying mechanisms and potential therapeutic targets. Dysregulated ncRNAs have been identified in brain metastases originating from various primary cancers, unveiling opportunities for intervention and prevention. The analysis of ncRNA expression in bodily fluids, such as serum and cerebrospinal fluid, provides a noninvasive means to differentiate brain metastases from primary tumors. NcRNAs, particularly miRNAs, assume a pivotal role in orchestrating the immune response within the brain microenvironment. MiRNAs exhibit promise in diagnosing brain metastases, effectively distinguishing between normal and cancer cells, and pinpointing the tissue of origin for metastatic brain tumors. The manipulation of miRNAs holds substantial potential in cancer treatment, offering the prospect of reducing toxicity and enhancing efficacy. Given the limited treatment options and the formidable threat of brain metastases in cancer patients, non-coding RNAs, especially miRNAs, emerge as beacons of hope, serving as both diagnostic tools and therapeutic targets. Further clinical studies are imperative to validate the specificity and sensitivity of ncRNAs, potentially reshaping approaches to tackle this challenge and elevate treatment outcomes for affected patients.
{"title":"MiRNAs as new potential biomarkers and therapeutic targets in brain metastasis","authors":"Ozal Beylerli , Huaizhang Shi , Sema Begliarzade , Alina Shumadalova , Tatiana Ilyasova , Albert Sufianov","doi":"10.1016/j.ncrna.2024.02.014","DOIUrl":"https://doi.org/10.1016/j.ncrna.2024.02.014","url":null,"abstract":"<div><p>Brain metastases represent a formidable challenge in cancer management, impacting a significant number of patients and contributing significantly to cancer-related mortality. Conventional diagnostic methods frequently fall short, underscoring the imperative for non-invasive alternatives. Non-coding RNAs (ncRNAs), specifically microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), present promising avenues for exploration. These ncRNAs exert influence over the prognosis and treatment resistance of brain metastases, offering valuable insights into underlying mechanisms and potential therapeutic targets. Dysregulated ncRNAs have been identified in brain metastases originating from various primary cancers, unveiling opportunities for intervention and prevention. The analysis of ncRNA expression in bodily fluids, such as serum and cerebrospinal fluid, provides a noninvasive means to differentiate brain metastases from primary tumors. NcRNAs, particularly miRNAs, assume a pivotal role in orchestrating the immune response within the brain microenvironment. MiRNAs exhibit promise in diagnosing brain metastases, effectively distinguishing between normal and cancer cells, and pinpointing the tissue of origin for metastatic brain tumors. The manipulation of miRNAs holds substantial potential in cancer treatment, offering the prospect of reducing toxicity and enhancing efficacy. Given the limited treatment options and the formidable threat of brain metastases in cancer patients, non-coding RNAs, especially miRNAs, emerge as beacons of hope, serving as both diagnostic tools and therapeutic targets. Further clinical studies are imperative to validate the specificity and sensitivity of ncRNAs, potentially reshaping approaches to tackle this challenge and elevate treatment outcomes for affected patients.</p></div>","PeriodicalId":37653,"journal":{"name":"Non-coding RNA Research","volume":"9 3","pages":"Pages 678-686"},"PeriodicalIF":5.0,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468054024000350/pdfft?md5=ffe92f9564ad1b51b38932e87348f5ab&pid=1-s2.0-S2468054024000350-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140331017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-22DOI: 10.1016/j.ncrna.2024.02.004
Suifen Xie , Ni Zhou , Nan Su , Zijun Xiao , Shanshan Wei , Yuanying Yang , Jian Liu , Wenqun Li , Bikui Zhang
Trastuzumab-induced cardiotoxicity (TIC) is a common and serious disease with abnormal cardiac function. Accumulating evidence has indicated certain non-coding RNAs (ncRNAs), functioning as competing endogenous RNAs (ceRNAs), impacting the progression of cardiovascular diseases. Nonetheless, the specific involvement of ncRNA-mediated ceRNA regulatory mechanisms in TIC remains elusive. The present research aims to comprehensively investigate changes in the expressions of all ncRNA using whole-transcriptome RNA sequencing. The sequencing analysis unveiled significant dysregulation, identifying a total of 43 circular RNAs (circRNAs), 270 long noncoding RNAs (lncRNAs), 12 microRNAs (miRNAs), and 4131 mRNAs in trastuzumab-treated mouse hearts. Subsequently, circRNA-based ceRNA networks consisting of 82 nodes and 91 edges, as well as lncRNA-based ceRNA networks comprising 111 nodes and 112 edges, were constructed. Using the CytoNCA plugin, pivotal genes—miR-31-5p and miR-644-5p—were identified within these networks, exhibiting potential relevance in TIC treatment. Additionally, KEGG and GO analyses were conducted to explore the functional pathways associated with the genes within the ceRNA networks. The outcomes of the predicted ceRNAs and bioinformatics analyses elucidated the plausible involvement of ncRNAs in TIC pathogenesis. This insight contributes to a better understanding of underlying mechanisms and aids in identifying promising targets for effective prevention and treatment strategies.
{"title":"Noncoding RNA-associated competing endogenous RNA networks in trastuzumab-induced cardiotoxicity","authors":"Suifen Xie , Ni Zhou , Nan Su , Zijun Xiao , Shanshan Wei , Yuanying Yang , Jian Liu , Wenqun Li , Bikui Zhang","doi":"10.1016/j.ncrna.2024.02.004","DOIUrl":"https://doi.org/10.1016/j.ncrna.2024.02.004","url":null,"abstract":"<div><p>Trastuzumab-induced cardiotoxicity (TIC) is a common and serious disease with abnormal cardiac function. Accumulating evidence has indicated certain non-coding RNAs (ncRNAs), functioning as competing endogenous RNAs (ceRNAs), impacting the progression of cardiovascular diseases. Nonetheless, the specific involvement of ncRNA-mediated ceRNA regulatory mechanisms in TIC remains elusive. The present research aims to comprehensively investigate changes in the expressions of all ncRNA using whole-transcriptome RNA sequencing. The sequencing analysis unveiled significant dysregulation, identifying a total of 43 circular RNAs (circRNAs), 270 long noncoding RNAs (lncRNAs), 12 microRNAs (miRNAs), and 4131 mRNAs in trastuzumab-treated mouse hearts. Subsequently, circRNA-based ceRNA networks consisting of 82 nodes and 91 edges, as well as lncRNA-based ceRNA networks comprising 111 nodes and 112 edges, were constructed. Using the CytoNCA plugin, pivotal genes—miR-31-5p and miR-644-5p—were identified within these networks, exhibiting potential relevance in TIC treatment. Additionally, KEGG and GO analyses were conducted to explore the functional pathways associated with the genes within the ceRNA networks. The outcomes of the predicted ceRNAs and bioinformatics analyses elucidated the plausible involvement of ncRNAs in TIC pathogenesis. This insight contributes to a better understanding of underlying mechanisms and aids in identifying promising targets for effective prevention and treatment strategies.</p></div>","PeriodicalId":37653,"journal":{"name":"Non-coding RNA Research","volume":"9 3","pages":"Pages 744-758"},"PeriodicalIF":5.0,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468054024000258/pdfft?md5=03cde70aac6d8ccb15b716982f709e4f&pid=1-s2.0-S2468054024000258-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140331016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-21DOI: 10.1016/j.ncrna.2024.02.012
Xiao-Wei Song , Wen-Xia He , Ting Su , Chang-Jin Li , Li-Li Jiang , Song-Qun Huang , Song-Hua Li , Zhi-Fu Guo , Bi-Li Zhang
PRKAG2 is required for the maintenance of cellular energy balance. PRKAG2-AS1, a long non-coding RNA (lncRNA), was found within the promoter region of PRKAG2. Despite the extensive expression of PRKAG2-AS1 in endothelial cells, the precise function and mechanism of this gene in endothelial cells have yet to be elucidated. The localization of PRKAG2-AS1 was predominantly observed in the nucleus, as revealed using nuclear and cytoplasmic fractionation and fluorescence in situ hybridization. The manipulation of PRKAG2-AS1 by knockdown and overexpression within the nucleus significantly altered PRKAG2 expression in a cis-regulatory manner. The expression of PRKAG2-AS1 and its target genes, PRKAG2b and PRKAG2d, was down-regulated in endothelial cells subjected to oxLDL and Hcy-induced injury. This finding suggests that PRKAG2-AS1 may be involved in the mechanism behind endothelial injury. The suppression of PRKAG2-AS1 specifically in the nucleus led to an upregulation of inflammatory molecules such as cytokines, adhesion molecules, and chemokines in endothelial cells. Additionally, this nuclear suppression of PRKAG2-AS1 facilitated the adherence of THP1 cells to endothelial cells. We confirmed the role of nuclear knockdown PRKAG2-AS1 in the induction of apoptosis and inhibition of cell proliferation, migration, and lumen formation through flow cytometry, TUNEL test, CCK8 assay, and cell scratching. Finally, it was determined that PRKAG2-AS1 exerts direct control over the transcription of PRKAG2 by its binding to their promoters. In conclusion, downregulation of PRKAG2-AS1 suppressed the proliferation and migration, promoted inflammation and apoptosis of endothelial cells, and thus contributed to the development of atherosclerosis resulting from endothelial cell injury.
{"title":"Abnormal expression of PRKAG2-AS1 in endothelial cells induced inflammation and apoptosis by reducing PRKAG2 expression","authors":"Xiao-Wei Song , Wen-Xia He , Ting Su , Chang-Jin Li , Li-Li Jiang , Song-Qun Huang , Song-Hua Li , Zhi-Fu Guo , Bi-Li Zhang","doi":"10.1016/j.ncrna.2024.02.012","DOIUrl":"https://doi.org/10.1016/j.ncrna.2024.02.012","url":null,"abstract":"<div><p>PRKAG2 is required for the maintenance of cellular energy balance. PRKAG2-AS1, a long non-coding RNA (lncRNA), was found within the promoter region of PRKAG2. Despite the extensive expression of PRKAG2-AS1 in endothelial cells, the precise function and mechanism of this gene in endothelial cells have yet to be elucidated. The localization of PRKAG2-AS1 was predominantly observed in the nucleus, as revealed using nuclear and cytoplasmic fractionation and fluorescence in situ hybridization. The manipulation of PRKAG2-AS1 by knockdown and overexpression within the nucleus significantly altered PRKAG2 expression in a <em>cis</em>-regulatory manner. The expression of PRKAG2-AS1 and its target genes, PRKAG2b and PRKAG2d, was down-regulated in endothelial cells subjected to oxLDL and Hcy-induced injury. This finding suggests that PRKAG2-AS1 may be involved in the mechanism behind endothelial injury. The suppression of PRKAG2-AS1 specifically in the nucleus led to an upregulation of inflammatory molecules such as cytokines, adhesion molecules, and chemokines in endothelial cells. Additionally, this nuclear suppression of PRKAG2-AS1 facilitated the adherence of THP1 cells to endothelial cells. We confirmed the role of nuclear knockdown PRKAG2-AS1 in the induction of apoptosis and inhibition of cell proliferation, migration, and lumen formation through flow cytometry, TUNEL test, CCK8 assay, and cell scratching. Finally, it was determined that PRKAG2-AS1 exerts direct control over the transcription of PRKAG2 by its binding to their promoters. In conclusion, downregulation of PRKAG2-AS1 suppressed the proliferation and migration, promoted inflammation and apoptosis of endothelial cells, and thus contributed to the development of atherosclerosis resulting from endothelial cell injury.</p></div>","PeriodicalId":37653,"journal":{"name":"Non-coding RNA Research","volume":"9 2","pages":"Pages 536-546"},"PeriodicalIF":5.0,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468054024000337/pdfft?md5=61284b784174008a0c7bf14608b7fef8&pid=1-s2.0-S2468054024000337-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140112968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-16DOI: 10.1016/j.ncrna.2024.02.003
Lei Zheng , Jin-jing He , Kai-xiang Zhao , Ya-fei Pan , Wei-xian Liu
This study investigates the crucial role of immune- and epithelial-mesenchymal transition (EMT)-associated genes and non-coding RNAs in glioma development and diagnosis, given the challenging 5-year survival rates associated with this prevalent CNS malignant tumor. Clinical and RNA data from glioma patients were meticulously gathered from CGGA databases, and EMT-related genes were sourced from dbEMT2.0, while immune-related genes were obtained from MSigDB. Employing consensus clustering, novel molecular subgroups were identified. Subsequent analyses, including ESTIMATE, TIMER, and MCP counter, provided insights into the tumor microenvironment (TIME) and immune status. Functional studies, embracing GO, KEGG, GSVA, and GSEA analyses, unraveled the underlying mechanisms governing these molecular subgroups. Utilizing the LASSO algorithm and multivariate Cox regression, a prognostic risk model was crafted. The study unveiled two distinct molecular subgroups with significantly disparate survival outcomes. A more favorable prognosis was linked to low immune scores, high tumor purity, and an abundance of immune infiltrating cells with differential expression of non-coding RNAs, including miRNAs. Functional analyses illuminated enrichment of immune- and EMT-associated pathways in differentially expressed genes and non-coding RNAs between these subgroups. GSVA and GSEA analyses hinted at abnormal EMT status potentially contributing to glioma-associated immune disorders. The risk model, centered on OS-EMT-ICI genes, exhibited promise in accurately predicting survival in glioma. Additionally, a nomogram integrating the risk model with clinical characteristics demonstrated notable accuracy in prognostic predictions for glioma patients. In conclusion, OS-EMT-ICI gene and non-coding RNA expression emerges as a valuable indicator intricately linked to immune microenvironment dysregulation, offering a robust tool for precise prognosis prediction in glioma patients within the OBMRC framework.
{"title":"Expression of overall survival-EMT-immune cell infiltration genes predict the prognosis of glioma","authors":"Lei Zheng , Jin-jing He , Kai-xiang Zhao , Ya-fei Pan , Wei-xian Liu","doi":"10.1016/j.ncrna.2024.02.003","DOIUrl":"10.1016/j.ncrna.2024.02.003","url":null,"abstract":"<div><p>This study investigates the crucial role of immune- and epithelial-mesenchymal transition (EMT)-associated genes and non-coding RNAs in glioma development and diagnosis, given the challenging 5-year survival rates associated with this prevalent CNS malignant tumor. Clinical and RNA data from glioma patients were meticulously gathered from CGGA databases, and EMT-related genes were sourced from dbEMT2.0, while immune-related genes were obtained from MSigDB. Employing consensus clustering, novel molecular subgroups were identified. Subsequent analyses, including ESTIMATE, TIMER, and MCP counter, provided insights into the tumor microenvironment (TIME) and immune status. Functional studies, embracing GO, KEGG, GSVA, and GSEA analyses, unraveled the underlying mechanisms governing these molecular subgroups. Utilizing the LASSO algorithm and multivariate Cox regression, a prognostic risk model was crafted. The study unveiled two distinct molecular subgroups with significantly disparate survival outcomes. A more favorable prognosis was linked to low immune scores, high tumor purity, and an abundance of immune infiltrating cells with differential expression of non-coding RNAs, including miRNAs. Functional analyses illuminated enrichment of immune- and EMT-associated pathways in differentially expressed genes and non-coding RNAs between these subgroups. GSVA and GSEA analyses hinted at abnormal EMT status potentially contributing to glioma-associated immune disorders. The risk model, centered on OS-EMT-ICI genes, exhibited promise in accurately predicting survival in glioma. Additionally, a nomogram integrating the risk model with clinical characteristics demonstrated notable accuracy in prognostic predictions for glioma patients. In conclusion, OS-EMT-ICI gene and non-coding RNA expression emerges as a valuable indicator intricately linked to immune microenvironment dysregulation, offering a robust tool for precise prognosis prediction in glioma patients within the OBMRC framework.</p></div>","PeriodicalId":37653,"journal":{"name":"Non-coding RNA Research","volume":"9 2","pages":"Pages 407-420"},"PeriodicalIF":5.0,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468054024000246/pdfft?md5=519c3379ba7a98093ae11c5fb3577656&pid=1-s2.0-S2468054024000246-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139966162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-10DOI: 10.1016/j.ncrna.2024.02.008
Hongyu Shi , Weijie Wang , Fan Li , Ao Guo , Tiecheng Liu
Maternal age has significantly increased among Chinese women, thereby posing risk of pregnancy-related complications. Preeclampsia is a leading cause of maternal and perinatal morbidity and mortality, and coagulation analysis in conjunction with clinical signs and symptoms are generally used for its diagnosis with limited efficacy. Sonoclot coagulation analyzer is effective in assessing coagulation function used during cerebral surgery and cardiovascular surgery. However, its use has not been explored in preeclampsia. Here, we investigated the potential use of Sonoclot in diagnosing preeclampsia in obstetrics cases. Subjects meeting the screening criteria were divided either into a test group or a control group, according to whether they were preeclamptic or not. We recorded the Sonoclot-derived coagulation and the routine coagulation parameters including platelet function (PF), activated clotting time (ACT) and clot rate (CR), prothrombin time (PT), activated partial thromboplastin time (APTT), thrombin time (TT), fibrinogen (FIB), and platelet count. Regression analysis was done on the relevant parameters to assess the feasibility of Sonoclot analyzer in preeclampsia diagnosis. In parallel, changes in preeclampsia lncRNAs was also evaluated. Significant differences were recorded in PT and ACT between the two groups. In the monovariant logistic regression, PT and ACT appeared to be reliable predictor variables. In the multinomial logistic regression, a total of five regression steps were performed with decreasing AIC values. The K-fold cross validation resulted in an accuracy rate (ACC) of 77.5%, a false positive rate of 16.4%, and a false negative rate of 33.2%. lncRNAs ANRIL and HOXD-AS1 were found deregulated. Our findings indicate that Sonoclot may be useful for diagnosis of preeclampsia in obstetrics.
{"title":"Model construction and application for predicting pre-eclampsia by Sonoclot coagulation analyzer","authors":"Hongyu Shi , Weijie Wang , Fan Li , Ao Guo , Tiecheng Liu","doi":"10.1016/j.ncrna.2024.02.008","DOIUrl":"10.1016/j.ncrna.2024.02.008","url":null,"abstract":"<div><p>Maternal age has significantly increased among Chinese women, thereby posing risk of pregnancy-related complications. Preeclampsia is a leading cause of maternal and perinatal morbidity and mortality, and coagulation analysis in conjunction with clinical signs and symptoms are generally used for its diagnosis with limited efficacy. Sonoclot coagulation analyzer is effective in assessing coagulation function used during cerebral surgery and cardiovascular surgery. However, its use has not been explored in preeclampsia. Here, we investigated the potential use of Sonoclot in diagnosing preeclampsia in obstetrics cases. Subjects meeting the screening criteria were divided either into a test group or a control group, according to whether they were preeclamptic or not. We recorded the Sonoclot-derived coagulation and the routine coagulation parameters including platelet function (PF), activated clotting time (ACT) and clot rate (CR), prothrombin time (PT), activated partial thromboplastin time (APTT), thrombin time (TT), fibrinogen (FIB), and platelet count. Regression analysis was done on the relevant parameters to assess the feasibility of Sonoclot analyzer in preeclampsia diagnosis. In parallel, changes in preeclampsia lncRNAs was also evaluated. Significant differences were recorded in PT and ACT between the two groups. In the monovariant logistic regression, PT and ACT appeared to be reliable predictor variables. In the multinomial logistic regression, a total of five regression steps were performed with decreasing AIC values. The K-fold cross validation resulted in an accuracy rate (ACC) of 77.5%, a false positive rate of 16.4%, and a false negative rate of 33.2%. lncRNAs ANRIL and HOXD-AS1 were found deregulated. Our findings indicate that Sonoclot may be useful for diagnosis of preeclampsia in obstetrics.</p></div>","PeriodicalId":37653,"journal":{"name":"Non-coding RNA Research","volume":"9 2","pages":"Pages 288-293"},"PeriodicalIF":5.0,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468054024000295/pdfft?md5=b50cdf606c56bee9ce612ccd38aa88f7&pid=1-s2.0-S2468054024000295-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139822284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
LncRNA PCAT6 has been shown to involve in carcinogenesis of different tumors. In this study, we investigated underline mechanism by which PCAT6 promoted breast cancer cell progression.
Methods
RIP was used to identify lncRNAs associated with IMP1. Bioinformatics assays were used to predict potential miRNAs that interact with PCAT6 and mRNAs that are targeted by miR-545-3p. RNA-seq and RT-qPCR were used to analyze differential expression of lncRNAs and miRNA-targeted genes. Luciferase reporter and RNA pull-down assays were performed to identify the molecular interactions between PCAT6 and individual miRNAs. The role of PCAT6-mediated cell proliferation and invasion were tested by CCK-8 and transwell assays following loss-of-function and gain-of-function effects.
Results
We identified that PCAT6 is one of the lncRNAs that associated with IMP1. PCAT6 not only binds to IMP1, but also acts as a ceRNA to interact with multiple miRNAs, including miR-545-3p. Binding of IMP1 destabilized PCAT6, while competitive interaction with miR-545-3p allowed PCAT6 to positively regulate UBFD1 expression. Silencing UBFD1 mRNA could effectively rescue PCAT6-induced cell proliferation and invasive abilities.
Conclusions
Our study provided evidence that PCAT6 activates UBFD1 expression via sponging miR-545-3p to increase carcinogenesis of breast cancer cells. Based on the nature of UBFD1 as a polyubiquitin binding protein, our study suggested that ubiquitin pathway might contribute to breast cancer progression.
{"title":"LncRNA PCAT6 mediates UBFD1 expression via sponging miR-545-3p in breast cancer cells","authors":"Jun-Dong Wu , Liqun Xu , Weibin Chen , Yanchun Zhou , Guiyu Zheng , Wei Gu","doi":"10.1016/j.ncrna.2024.01.019","DOIUrl":"10.1016/j.ncrna.2024.01.019","url":null,"abstract":"<div><h3>Background</h3><p>LncRNA PCAT6 has been shown to involve in carcinogenesis of different tumors. In this study, we investigated underline mechanism by which PCAT6 promoted breast cancer cell progression.</p></div><div><h3>Methods</h3><p>RIP was used to identify lncRNAs associated with IMP1. Bioinformatics assays were used to predict potential miRNAs that interact with PCAT6 and mRNAs that are targeted by miR-545-3p. RNA-seq and RT-qPCR were used to analyze differential expression of lncRNAs and miRNA-targeted genes. Luciferase reporter and RNA pull-down assays were performed to identify the molecular interactions between PCAT6 and individual miRNAs. The role of PCAT6-mediated cell proliferation and invasion were tested by CCK-8 and transwell assays following loss-of-function and gain-of-function effects.</p></div><div><h3>Results</h3><p>We identified that PCAT6 is one of the lncRNAs that associated with IMP1. PCAT6 not only binds to IMP1, but also acts as a ceRNA to interact with multiple miRNAs, including miR-545-3p. Binding of IMP1 destabilized PCAT6, while competitive interaction with miR-545-3p allowed PCAT6 to positively regulate UBFD1 expression. Silencing UBFD1 mRNA could effectively rescue PCAT6-induced cell proliferation and invasive abilities.</p></div><div><h3>Conclusions</h3><p>Our study provided evidence that PCAT6 activates UBFD1 expression via sponging miR-545-3p to increase carcinogenesis of breast cancer cells. Based on the nature of UBFD1 as a polyubiquitin binding protein, our study suggested that ubiquitin pathway might contribute to breast cancer progression.</p></div>","PeriodicalId":37653,"journal":{"name":"Non-coding RNA Research","volume":"9 2","pages":"Pages 421-428"},"PeriodicalIF":5.0,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468054024000192/pdfft?md5=2b5e8b08aa95dddd3b2a5b9266325bf2&pid=1-s2.0-S2468054024000192-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139883961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gallbladder carcinoma (GBC) is a common malignancy and is usually diagnosed in the late stages of the disease. The identification of new effective early diagnostic biomarkers could represent an effective approach in reducing mortality in GBC. Altered expression of long non-coding RNAs (lncRNAs) is believed to be associated with the emergence and development of GBC. Our study aims to identify the expression of a range of circulating lncRNAs, including HOTAIR, ANRIL, H19, CCAT1 and MEG3, in matched serum and tissues of GBC for diagnosis and its association with clinicopathological features. The case and control study included matched serum and tissues from 63 GBC, 19 cholecystitis (CC), and 46 normal controls (NC). RNA extraction and cDNA synthesis from serum and fresh tissue match were performed using commercially available kits. Relative expression was assessed using SYBR Green real-time quantitative polymerase chain reaction. Circulating lncRNA levels including HOTAIR, ANRIL and H19 were upregulated in serum samples, while MEG3 and CCAT1 were downregulated in GBC compared to controls. The trend towards upregulation and downregulation was comparable in the tissue. HOTAIR and MEG3 levels were significantly different between serum CC and early-stage GBC (p = 0.0373, 0.0020), while H19 was significantly upregulated comparing early-stage GBC to advanced-stage GBC (p = 0.018). The expression of ANRIL was significant with M stage (p = 0.0488), H19 with stage (p = 0.009), M stage (p=<0.0001) & stage (0.009) and CCAT1 with M stage (0.044). When distinguishing GBC and NC, AUC for HOTAIR was 0.75, ANRIL 0.78, H19 0.74, CCAT1 0.80 and 0.96 for MEG3. The combination sensitivity for lncRNAs ranged from 84.13% (CI: 72.74–92.12%) to 100.0% (CI: 94.31–100.0%). Significant diagnostic value in discriminating pathologic stage was observed for ANRIL and MEG3 (p = 0.022, p = 0.0005). LncRNA show a significant change in expression in GBC and in discrimination of early stage from late-stage disease. The detection of 2 lncRNAs in panels, in coordination with radiology, could represent a potential serum-based biomarker for early-stage GBC diagnosis.
{"title":"Panel of serum long non-coding RNAs as potential non-invasive biomarkers for gallbladder carcinoma","authors":"Sridhar Mishra , Pallavi Srivastava , Anshuman Pandey , Akash Agarwal , Saumya Shukla , Nuzhat Husain","doi":"10.1016/j.ncrna.2024.02.005","DOIUrl":"10.1016/j.ncrna.2024.02.005","url":null,"abstract":"<div><p>Gallbladder carcinoma (GBC) is a common malignancy and is usually diagnosed in the late stages of the disease. The identification of new effective early diagnostic biomarkers could represent an effective approach in reducing mortality in GBC. Altered expression of long non-coding RNAs (lncRNAs) is believed to be associated with the emergence and development of GBC. Our study aims to identify the expression of a range of circulating lncRNAs, including HOTAIR, ANRIL, H19, CCAT1 and MEG3, in matched serum and tissues of GBC for diagnosis and its association with clinicopathological features. The case and control study included matched serum and tissues from 63 GBC, 19 cholecystitis (CC), and 46 normal controls (NC). RNA extraction and cDNA synthesis from serum and fresh tissue match were performed using commercially available kits. Relative expression was assessed using SYBR Green real-time quantitative polymerase chain reaction. Circulating lncRNA levels including HOTAIR, ANRIL and H19 were upregulated in serum samples, while MEG3 and CCAT1 were downregulated in GBC compared to controls. The trend towards upregulation and downregulation was comparable in the tissue. HOTAIR and MEG3 levels were significantly different between serum CC and early-stage GBC (p = 0.0373, 0.0020), while H19 was significantly upregulated comparing early-stage GBC to advanced-stage GBC (p = 0.018). The expression of ANRIL was significant with M stage (p = 0.0488), H19 with stage (p = 0.009), M stage (p=<0.0001) & stage (0.009) and CCAT1 with M stage (0.044). When distinguishing GBC and NC, AUC for HOTAIR was 0.75, ANRIL 0.78, H19 0.74, CCAT1 0.80 and 0.96 for MEG3. The combination sensitivity for lncRNAs ranged from 84.13% (CI: 72.74–92.12%) to 100.0% (CI: 94.31–100.0%). Significant diagnostic value in discriminating pathologic stage was observed for ANRIL and MEG3 (p = 0.022, p = 0.0005). LncRNA show a significant change in expression in GBC and in discrimination of early stage from late-stage disease. The detection of 2 lncRNAs in panels, in coordination with radiology, could represent a potential serum-based biomarker for early-stage GBC diagnosis.</p></div>","PeriodicalId":37653,"journal":{"name":"Non-coding RNA Research","volume":"9 2","pages":"Pages 583-593"},"PeriodicalIF":5.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S246805402400026X/pdfft?md5=db36ada233084200c3d5788dacc6d41c&pid=1-s2.0-S246805402400026X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139820898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}