Pub Date : 2019-10-01DOI: 10.1109/SmartGridComm.2019.8909781
Chenghao Deng, Fang Yang, Xuan Liu, Hailong Zhang, Jun Ye, Changyong Pan, Jian Song
In power line communications (PLC), because of the severe channel condition, the access resource is limited and the network is unable to accommodate massive clients in future smart grid applications. However, non-orthogonal multiple access (NOMA) enable users to share the limited time and frequency resource. In this paper, an access scheme based on carrier sense multiple access (CSMA) and NOMA is proposed, where more than one user can access to the channel and transmit the packets in the same time slot and frequency band. Then, the optimal decoding order is obtained with the power allocation of primary users. To analyze the collision rate of the proposed scheme, the process of users transmitting data packets is modeled as a Markov chain, and the collision rate with higher access number is proved to be decreased. Meanwhile, the system throughput increases due to higher data rate of the multi-user channel and lower collision rate. Numerical results indicate the superior performance of the proposed protocol with high network load.
{"title":"CSMA-and-NOMA-based Random Massive Access in Power Line Communication for Smart Gird Applications","authors":"Chenghao Deng, Fang Yang, Xuan Liu, Hailong Zhang, Jun Ye, Changyong Pan, Jian Song","doi":"10.1109/SmartGridComm.2019.8909781","DOIUrl":"https://doi.org/10.1109/SmartGridComm.2019.8909781","url":null,"abstract":"In power line communications (PLC), because of the severe channel condition, the access resource is limited and the network is unable to accommodate massive clients in future smart grid applications. However, non-orthogonal multiple access (NOMA) enable users to share the limited time and frequency resource. In this paper, an access scheme based on carrier sense multiple access (CSMA) and NOMA is proposed, where more than one user can access to the channel and transmit the packets in the same time slot and frequency band. Then, the optimal decoding order is obtained with the power allocation of primary users. To analyze the collision rate of the proposed scheme, the process of users transmitting data packets is modeled as a Markov chain, and the collision rate with higher access number is proved to be decreased. Meanwhile, the system throughput increases due to higher data rate of the multi-user channel and lower collision rate. Numerical results indicate the superior performance of the proposed protocol with high network load.","PeriodicalId":377150,"journal":{"name":"2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125316211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-10-01DOI: 10.1109/SmartGridComm.2019.8909806
William Lardier, Quentin Varo, Jun Yan
Grid modernization efforts with the latest information and communication technologies will significantly benefit smart grids in the coming years. More optical fibre communications between consumers and the control center will promise better demand response and customer engagement, yet the increasing attack surface and man-in-the-middle (MITM) threats can result in security and privacy challenges. Among the studies for more secure smart grid communications, quantum key distribution protocols (QKD) have emerged as a promising option. To bridge the theoretical advantages of quantum communication to its practical utilization, however, comprehensive investigations have to be conducted with realistic cyber-physical smart grid structures and scenarios. To facilitate research in this direction, this paper proposes an open-source, research-oriented co-simulation platform that orchestrates cyber and power simulators under the MOSAIK framework. The proposed platform allows flexible and realistic power flow-based co-simulation of quantum communications and electrical grids, where different cyber and power topologies, QKD protocols, and attack threats can be investigated. Using quantum-based communication under MITM attacks, the paper presented detailed case studies to demonstrate how the platform enables quick setup of a lowvoltage distribution grid, implementation of different protocols and cryptosystems, as well as evaluations of both communication efficiency and security against MITM attacks. The platform has been made available online to empower researchers in the modelling of quantum-based cyber-physical systems, pilot studies on quantum communications in smart grid, as well as improved attack resilience against malicious intruders.
{"title":"Quantum-Sim: An Open-Source Co-Simulation Platform for Quantum Key Distribution-Based Smart Grid Communications","authors":"William Lardier, Quentin Varo, Jun Yan","doi":"10.1109/SmartGridComm.2019.8909806","DOIUrl":"https://doi.org/10.1109/SmartGridComm.2019.8909806","url":null,"abstract":"Grid modernization efforts with the latest information and communication technologies will significantly benefit smart grids in the coming years. More optical fibre communications between consumers and the control center will promise better demand response and customer engagement, yet the increasing attack surface and man-in-the-middle (MITM) threats can result in security and privacy challenges. Among the studies for more secure smart grid communications, quantum key distribution protocols (QKD) have emerged as a promising option. To bridge the theoretical advantages of quantum communication to its practical utilization, however, comprehensive investigations have to be conducted with realistic cyber-physical smart grid structures and scenarios. To facilitate research in this direction, this paper proposes an open-source, research-oriented co-simulation platform that orchestrates cyber and power simulators under the MOSAIK framework. The proposed platform allows flexible and realistic power flow-based co-simulation of quantum communications and electrical grids, where different cyber and power topologies, QKD protocols, and attack threats can be investigated. Using quantum-based communication under MITM attacks, the paper presented detailed case studies to demonstrate how the platform enables quick setup of a lowvoltage distribution grid, implementation of different protocols and cryptosystems, as well as evaluations of both communication efficiency and security against MITM attacks. The platform has been made available online to empower researchers in the modelling of quantum-based cyber-physical systems, pilot studies on quantum communications in smart grid, as well as improved attack resilience against malicious intruders.","PeriodicalId":377150,"journal":{"name":"2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123863687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-10-01DOI: 10.1109/SmartGridComm.2019.8909779
G. Prasad, Yinjia Huo, L. Lampe, Victor C. M. Leung
Security and privacy of smart grid communication data is crucial given the nature of the continuous bidirectional information exchange between the consumer and the utilities. Data security has conventionally been ensured using cryptographic techniques implemented at the upper layers of the network stack. However, it has been shown that security can be further enhanced using physical layer (PHY) methods. To aid and/or complement such PHY and upper layer techniques, in this paper, we propose a PHY design that can detect and locate not only an active intruder but also a passive eavesdropper in the network. Our method can either be used as a stand-alone solution or together with existing techniques to achieve improved smart grid data security. Our machine learning based solution intelligently and automatically detects and locates a possible intruder in the network by reusing power line transmission modems installed in the grid for communication purposes. Simulation results show that our cost-efficient design provides near ideal intruder detection rates and also estimates its location with a high degree of accuracy.
{"title":"Machine Learning Based Physical-Layer Intrusion Detection and Location for the Smart Grid","authors":"G. Prasad, Yinjia Huo, L. Lampe, Victor C. M. Leung","doi":"10.1109/SmartGridComm.2019.8909779","DOIUrl":"https://doi.org/10.1109/SmartGridComm.2019.8909779","url":null,"abstract":"Security and privacy of smart grid communication data is crucial given the nature of the continuous bidirectional information exchange between the consumer and the utilities. Data security has conventionally been ensured using cryptographic techniques implemented at the upper layers of the network stack. However, it has been shown that security can be further enhanced using physical layer (PHY) methods. To aid and/or complement such PHY and upper layer techniques, in this paper, we propose a PHY design that can detect and locate not only an active intruder but also a passive eavesdropper in the network. Our method can either be used as a stand-alone solution or together with existing techniques to achieve improved smart grid data security. Our machine learning based solution intelligently and automatically detects and locates a possible intruder in the network by reusing power line transmission modems installed in the grid for communication purposes. Simulation results show that our cost-efficient design provides near ideal intruder detection rates and also estimates its location with a high degree of accuracy.","PeriodicalId":377150,"journal":{"name":"2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122388130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-10-01DOI: 10.1109/SmartGridComm.2019.8909725
S. Barker, Kyle Morrison, Tucker Williams
The recent explosion of interest in smart building energy-efficiency has led to a proliferation of public energy datasets. Most of these datasets focus on depth (i.e., many devices in a few buildings) as opposed to breadth (e.g., a few devices in many buildings), and thus most smart building algorithms are evaluated on depth-oriented datasets. We argue that increasing data breadth conveys important benefits that are not easily achieved by even a large quantity of deep data. As an illustrative case study, we consider the problem of classifying previously unseen appliances using an off-the-shelf classifier trained on known instances of other devices. Our experiments on multiple real-world datasets (both depth- and breadth-oriented) demonstrate significant and sustained benefits from increased data breadth, and point to the importance of incorporating greater breadth into similar techniques that rely on generalized electrical load models.
{"title":"Exploiting Breadth in Energy Datasets for Automated Device Identification","authors":"S. Barker, Kyle Morrison, Tucker Williams","doi":"10.1109/SmartGridComm.2019.8909725","DOIUrl":"https://doi.org/10.1109/SmartGridComm.2019.8909725","url":null,"abstract":"The recent explosion of interest in smart building energy-efficiency has led to a proliferation of public energy datasets. Most of these datasets focus on depth (i.e., many devices in a few buildings) as opposed to breadth (e.g., a few devices in many buildings), and thus most smart building algorithms are evaluated on depth-oriented datasets. We argue that increasing data breadth conveys important benefits that are not easily achieved by even a large quantity of deep data. As an illustrative case study, we consider the problem of classifying previously unseen appliances using an off-the-shelf classifier trained on known instances of other devices. Our experiments on multiple real-world datasets (both depth- and breadth-oriented) demonstrate significant and sustained benefits from increased data breadth, and point to the importance of incorporating greater breadth into similar techniques that rely on generalized electrical load models.","PeriodicalId":377150,"journal":{"name":"2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126557399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-10-01DOI: 10.1109/SmartGridComm.2019.8909720
Hailing Zhu, K. Ouahada
In this paper, energy storage sharing among a group of households with integrated renewable generations in a grid-connected microgrid is studied. In such a microgrid, a shared energy storage management (SESM) system is operated by an aggregator aiming to minimize the long term time-averaged costs of all households, by jointly taking into account the operational constraints of the shared energy storage, the stochastic solar power generations and the time-varying load requests from all households, as well as the fluctuating electricity prices. We formulate this energy management problem, which comprises storage management and load control, as a constrained stochastic programming problem. A centralized real-time sharing control algorithm is designed based on the Lyapunov optimization theory. The performance of the proposed real-time sharing control algorithm is evaluated. By comparing with a greedy sharing algorithm, it is shown that the proposed sharing algorithm outperforms in terms of both cost saving and renewable energy generation utilization.
{"title":"Cost Minimization Energy Storage Sharing Management","authors":"Hailing Zhu, K. Ouahada","doi":"10.1109/SmartGridComm.2019.8909720","DOIUrl":"https://doi.org/10.1109/SmartGridComm.2019.8909720","url":null,"abstract":"In this paper, energy storage sharing among a group of households with integrated renewable generations in a grid-connected microgrid is studied. In such a microgrid, a shared energy storage management (SESM) system is operated by an aggregator aiming to minimize the long term time-averaged costs of all households, by jointly taking into account the operational constraints of the shared energy storage, the stochastic solar power generations and the time-varying load requests from all households, as well as the fluctuating electricity prices. We formulate this energy management problem, which comprises storage management and load control, as a constrained stochastic programming problem. A centralized real-time sharing control algorithm is designed based on the Lyapunov optimization theory. The performance of the proposed real-time sharing control algorithm is evaluated. By comparing with a greedy sharing algorithm, it is shown that the proposed sharing algorithm outperforms in terms of both cost saving and renewable energy generation utilization.","PeriodicalId":377150,"journal":{"name":"2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126589760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-10-01DOI: 10.1109/smartgridcomm.2019.8909738
{"title":"SmartGridComm 2019 Committees","authors":"","doi":"10.1109/smartgridcomm.2019.8909738","DOIUrl":"https://doi.org/10.1109/smartgridcomm.2019.8909738","url":null,"abstract":"","PeriodicalId":377150,"journal":{"name":"2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"220 2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129876681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-10-01DOI: 10.1109/SmartGridComm.2019.8909771
A. Sebastian, S. Islam, Md. Apel Mahmud, A. Oo
In this paper, the energy sell/purchase for local energy trading is optimized to minimize the energy mismatch in a microgrid. In this microgrid, three groups of houses have been considered, those who have no solar panel or storage, those who have solar panels but no storage and those who have both the solar panel and storage. The houses are also equipped with load shifting capacity. For each of the houses, the difference in energy generation and consumption is forwarded to the control centre and the control centre optimizes the energy trading after which the outcome of the optimization is transmitted to individual houses. Different priorities are assigned to houses according to their consumption pattern and the corresponding optimization problems are solved in multiple stages accordingly. To evaluate the effectiveness of the proposed approach through numerical simulation, four different scenarios were considered with different energy consumption patterns and load shifting at different houses. The simulation results demonstrate that the proposed approach can achieve a reduction in energy mismatch up to 1000W during 09.00 a.m. to 12.00 p.m. for a microgrid with six houses and is more effective compared to the schemes where priorities are not assigned to participants. Moreover, the energy mismatch is further reduced when energy trading is jointly implemented with load shifting.
{"title":"Optimum Local Energy Trading considering Priorities in a Microgrid","authors":"A. Sebastian, S. Islam, Md. Apel Mahmud, A. Oo","doi":"10.1109/SmartGridComm.2019.8909771","DOIUrl":"https://doi.org/10.1109/SmartGridComm.2019.8909771","url":null,"abstract":"In this paper, the energy sell/purchase for local energy trading is optimized to minimize the energy mismatch in a microgrid. In this microgrid, three groups of houses have been considered, those who have no solar panel or storage, those who have solar panels but no storage and those who have both the solar panel and storage. The houses are also equipped with load shifting capacity. For each of the houses, the difference in energy generation and consumption is forwarded to the control centre and the control centre optimizes the energy trading after which the outcome of the optimization is transmitted to individual houses. Different priorities are assigned to houses according to their consumption pattern and the corresponding optimization problems are solved in multiple stages accordingly. To evaluate the effectiveness of the proposed approach through numerical simulation, four different scenarios were considered with different energy consumption patterns and load shifting at different houses. The simulation results demonstrate that the proposed approach can achieve a reduction in energy mismatch up to 1000W during 09.00 a.m. to 12.00 p.m. for a microgrid with six houses and is more effective compared to the schemes where priorities are not assigned to participants. Moreover, the energy mismatch is further reduced when energy trading is jointly implemented with load shifting.","PeriodicalId":377150,"journal":{"name":"2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128337052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vulnerability of various machine learning methods to adversarial examples has been recently explored in the literature. Power systems which use these vulnerable methods face a huge threat against adversarial examples. To this end, we first propose a more accurate and computationally efficient method called Adaptive Normalized Attack (ANA) to attack power systems using generate adversarial examples. We then adopt adversarial training to defend against attacks of adversarial examples. Experimental analyses demonstrate that our attack method provides less perturbation compared to the state-of-the-art FGSM (Fast Gradient Sign Method) and DeepFool, while our proposed method increases misclassification rate of learning methods for attacking power systems. In addition, the results show that the proposed adversarial training improves robustness of power systems to adversarial examples compared to using state-of-the-art methods.
{"title":"Adaptive Normalized Attacks for Learning Adversarial Attacks and Defenses in Power Systems","authors":"Jiwei Tian, Tengyao Li, Fute Shang, Kunrui Cao, Jing Li, M. Ozay","doi":"10.1109/SmartGridComm.2019.8909713","DOIUrl":"https://doi.org/10.1109/SmartGridComm.2019.8909713","url":null,"abstract":"Vulnerability of various machine learning methods to adversarial examples has been recently explored in the literature. Power systems which use these vulnerable methods face a huge threat against adversarial examples. To this end, we first propose a more accurate and computationally efficient method called Adaptive Normalized Attack (ANA) to attack power systems using generate adversarial examples. We then adopt adversarial training to defend against attacks of adversarial examples. Experimental analyses demonstrate that our attack method provides less perturbation compared to the state-of-the-art FGSM (Fast Gradient Sign Method) and DeepFool, while our proposed method increases misclassification rate of learning methods for attacking power systems. In addition, the results show that the proposed adversarial training improves robustness of power systems to adversarial examples compared to using state-of-the-art methods.","PeriodicalId":377150,"journal":{"name":"2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132174033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-10-01DOI: 10.1109/SmartGridComm.2019.8909816
Yunxiang Wu, Qinghua Xu, S. Shao, Hongpin Zhao, G. Chang, Yang Liu
This paper presents a common DC system employed in a research vessel, showing the advantages of smaller size, less fuel consumption and better control performance. Detailed design considerations are discussed, followed by experimental verification and field test results. The proposed system can achieve stable and flexible operation.
{"title":"Design and Practical Verification of a Common DC Bus Power System in a Research Vessel","authors":"Yunxiang Wu, Qinghua Xu, S. Shao, Hongpin Zhao, G. Chang, Yang Liu","doi":"10.1109/SmartGridComm.2019.8909816","DOIUrl":"https://doi.org/10.1109/SmartGridComm.2019.8909816","url":null,"abstract":"This paper presents a common DC system employed in a research vessel, showing the advantages of smaller size, less fuel consumption and better control performance. Detailed design considerations are discussed, followed by experimental verification and field test results. The proposed system can achieve stable and flexible operation.","PeriodicalId":377150,"journal":{"name":"2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"171 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133640256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-10-01DOI: 10.1109/SmartGridComm.2019.8909708
Shiyao Zhang, Ka-Cheong Leung
Electric Bus (EB), as a special type of electric vehicle (EV), can be regarded as a large mobile storage in the city. With large batteries installed, EBs are capable of providing frequency regulation service to the local power grid of the city. In this paper, a novel framework for joint optimal allocation and scheduling for EBs with V2G regulation service is studied. First, the optimal allocation and scheduling problem is proposed as a mixed-integer quadratic programming (MIQP) problem. Second, by using the Lagrangian dual decomposition method, a distributed algorithm is devised to solve this problem. The simulation results show that both the optimal allocation to balance EB demand in the city and scheduling for V2G regulation service can be achieved in an effective manner. In addition, with more EBs participated in the system, the power fluctuations of local city power grid can be further flattened.
{"title":"Joint Optimal Allocation and Scheduling for Electric Buses with Vehicle-to-Grid Regulation Service","authors":"Shiyao Zhang, Ka-Cheong Leung","doi":"10.1109/SmartGridComm.2019.8909708","DOIUrl":"https://doi.org/10.1109/SmartGridComm.2019.8909708","url":null,"abstract":"Electric Bus (EB), as a special type of electric vehicle (EV), can be regarded as a large mobile storage in the city. With large batteries installed, EBs are capable of providing frequency regulation service to the local power grid of the city. In this paper, a novel framework for joint optimal allocation and scheduling for EBs with V2G regulation service is studied. First, the optimal allocation and scheduling problem is proposed as a mixed-integer quadratic programming (MIQP) problem. Second, by using the Lagrangian dual decomposition method, a distributed algorithm is devised to solve this problem. The simulation results show that both the optimal allocation to balance EB demand in the city and scheduling for V2G regulation service can be achieved in an effective manner. In addition, with more EBs participated in the system, the power fluctuations of local city power grid can be further flattened.","PeriodicalId":377150,"journal":{"name":"2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116315232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}