首页 > 最新文献

Analitika i Kontrol最新文献

英文 中文
Determination of 1-pyrenol in urine by gas chromatography with mass selective detector 气相色谱-质量选择检测器测定尿中1-芘醇
Q4 Chemistry Pub Date : 2019-01-01 DOI: 10.15826/analitika.2019.23.4.007
A. Alekseenko, O. Zhurba, A. Merinov
Urinary 1-pyrenol belongs to the biological markers of exposure to the polyaromatic hydrocarbons. Several methods for the determination of 1-pyrenol in urine necessarily include enzymatic hydrolysis, extraction from the biological sample, and derivatization with the silylating agent. Enzymatic hydrolysis and silylation take very long time: 16 hours and 40 minutes respectively. A shorter and more sensitive version of the determination of 1-pyrenol in urine by gas chromatography with mass-selective detection is proposed. Enzymatic hydrolysis with β-glucuronidase is used for 1h to digest the conjugated form of 1-pyrenol (as glucuronide). After the enzymatic hydrolysis, the analyte is extracted from the biological matrix by hexane extraction, followed by evaporation of the extract to dry residue in an inert gas stream. The optimum conditions for liquid extraction are established by varying the ratio of salting out agent : extraction time : extraction ratio. The dry residue is re-dissolved and derivatized in the silylating reagent N, O-bis (trimethylsilyl) trifluoroacetamide (BSTFA) into trimethylsilyl ether at room temperature for 5 minutes. The analysis of the trimethylsilyl extract is carried out by gas chromatography on HP-5MS capillary column with mass-selective detection. The analyte is identified by the retention time and the ratio of the main and confirming ions. The high-accuracy determination is ensured by using the internal standard 1-pyrenol-d 9 . The range of detectable concentrations of the method is from 0.1 to 100 μg/l. Repeatability and interlaboratory precision are 4.4% and 6.4% respectively. The systematic error turns out to be insignificant. The accuracy is 14%. The method is tested on the urine samples of workers with the main professions in the aluminum production industry.
尿中1-芘醇属于暴露于多芳烃的生物标志物。测定尿液中1-芘醇的几种方法包括酶解、生物样品提取和硅烷化剂衍生化。酶解和硅基化需要很长的时间:分别为16小时和40分钟。提出了一种快速、灵敏的气相色谱-质量选择性检测尿液中1-芘醇的方法。用β-葡萄糖醛酸酶水解1h,消化1-芘醇的共轭形式(作为葡萄糖醛酸)。酶解后,通过己烷萃取从生物基质中提取分析物,然后将萃取物在惰性气流中蒸发以干燥残留物。通过改变盐析剂的配比、萃取时间和萃取率,确定了萃取的最佳条件。干燥残渣在硅烷化试剂N, o -二(三甲基硅基)三氟乙酰胺(BSTFA)中再溶解衍生,室温下反应5分钟。采用HP-5MS毛细管柱气相色谱法对三甲基硅基提取物进行分析。分析物通过保留时间和主离子和确认离子的比例来鉴别。采用内标1-吡咯醇-d - 9,保证了测定的准确性。该方法的检测浓度范围为0.1 ~ 100 μg/l。重复性和实验室间精密度分别为4.4%和6.4%。系统误差被证明是微不足道的。准确率为14%。用该方法对铝生产行业主要职业工人的尿液样本进行了测试。
{"title":"Determination of 1-pyrenol in urine by gas chromatography with mass selective detector","authors":"A. Alekseenko, O. Zhurba, A. Merinov","doi":"10.15826/analitika.2019.23.4.007","DOIUrl":"https://doi.org/10.15826/analitika.2019.23.4.007","url":null,"abstract":"Urinary 1-pyrenol belongs to the biological markers of exposure to the polyaromatic hydrocarbons. Several methods for the determination of 1-pyrenol in urine necessarily include enzymatic hydrolysis, extraction from the biological sample, and derivatization with the silylating agent. Enzymatic hydrolysis and silylation take very long time: 16 hours and 40 minutes respectively. A shorter and more sensitive version of the determination of 1-pyrenol in urine by gas chromatography with mass-selective detection is proposed. Enzymatic hydrolysis with β-glucuronidase is used for 1h to digest the conjugated form of 1-pyrenol (as glucuronide). After the enzymatic hydrolysis, the analyte is extracted from the biological matrix by hexane extraction, followed by evaporation of the extract to dry residue in an inert gas stream. The optimum conditions for liquid extraction are established by varying the ratio of salting out agent : extraction time : extraction ratio. The dry residue is re-dissolved and derivatized in the silylating reagent N, O-bis (trimethylsilyl) trifluoroacetamide (BSTFA) into trimethylsilyl ether at room temperature for 5 minutes. The analysis of the trimethylsilyl extract is carried out by gas chromatography on HP-5MS capillary column with mass-selective detection. The analyte is identified by the retention time and the ratio of the main and confirming ions. The high-accuracy determination is ensured by using the internal standard 1-pyrenol-d 9 . The range of detectable concentrations of the method is from 0.1 to 100 μg/l. Repeatability and interlaboratory precision are 4.4% and 6.4% respectively. The systematic error turns out to be insignificant. The accuracy is 14%. The method is tested on the urine samples of workers with the main professions in the aluminum production industry.","PeriodicalId":37743,"journal":{"name":"Analitika i Kontrol","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67251855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of a molecularly imprinted polymer based on the polyimide as a piezosensor selective coating for determining the oleic acid in oils 基于聚酰亚胺的分子印迹聚合物作为一种压电传感器选择性涂层用于测定油中的油酸
Q4 Chemistry Pub Date : 2019-01-01 DOI: 10.15826/analitika.2019.23.1.006
C. N. Linh, О. V. Duvanova, A. N. Zyablov
При создании селективных пьезоэлектрических сенсоров на основе полимеров с молекулярными отпечатками (ПМО) рассмотрена возможность применения квантово-химического моделирования для выбора условий их синтеза. Исходным полимером для получения ПМО являлась полиамидокислота (ПАК), представляющая собой сополимер 1,2,4,5-бензолтетракарбоновой кислоты с 4,4′-диаминодифенилоксидом. При двухступенчатой термоимидизации раствора ПАК в присутствии темплата образовывался полиимид с молекулярным отпечатком. В качестве темплата служила олеиновая кислота. Оптимизацию структур и вычисление энергий проводили с использованием программы Gaussian 09 гибридным методом функционала плотности B3LYP в базисе 6-31G(d,p) с коррекцией ошибки суперпозиции базисных наборов BSSE (basis set superposition error). Показано, что структура радикала жирной кислоты играет решающую роль в образовании отпечатков и, соответственно, в селективности полимера. На основании проведенных квантово-химических расчетов установлено оптимальное соотношение реагентов в предполимеризационной смеси 4 : 1. Методом нековалентного импринтинга синтезированы полимеры с молекулярными отпечатками олеиновой кислоты на поверхности пьезоэлектрических сенсоров. Экспериментально оценена способность полученных сенсоров к распознаванию этой кислоты в модельных бинарных и тройных смесях жирных кислот, установлено, что сенсор на основе полимера с молекулярными отпечатками наиболее чувствителен к олеиновой кислоте, предел обнаружения которой составил 0.14 г/дм3. Пьезоэлектрические сенсоры на основе ПМО апробированы при определении жирной кислоты в растительных маслах (подсолнечное, кукурузное, оливковое, льняное, рапсовое), в качестве метода сравнения использовали хромато-масс-спектрометрию и установили, что разность результатов определения менее 10 %. Ключевые слова: полимеры с молекулярными отпечатками, полиамидокислота, полиимид, олеиновая кислота, компьютерное моделирование, модифицированные пьезосенсоры.
通过分子指纹聚合物(pmo)选择压电传感器,考虑使用量子化学模拟来选择合成条件。pmo的原始聚合物是聚合物(pac),共聚物为1.2.4.5 -苯甲基四甲基二甲基二甲基二甲基二甲基二甲基二甲基二甲基二甲基二甲基二甲基二甲基二甲基二甲基二甲基二甲基二甲酸。在park溶液的两级热塑性模拟中,在温度下产生了分子指纹的聚合物。oleino酸作为速度的一部分。使用6-31G(d,p)中的B3LYP混合功能方法优化结构和计算能量。它表明,脂肪酸的激进结构在指纹的产生和聚合物的选择性中起着关键作用。根据量子化学计算,在聚合前4:1中确定了试剂的最佳比例。非价印法合成了一种聚合物,在压电传感器表面上含有oleino酸的分子指纹。实验评估了传感器在模型二进制和三重脂肪酸混合物中识别这种酸的能力,发现的范围为0.14 g / dm3。压电传感器在植物油(向日葵、玉米、橄榄油、亚麻、油菜籽)中测试脂肪酸,使用铬质质谱仪作为比较方法,检测结果差不到10%。关键字:分子指纹聚合物,聚酰胺,聚酰胺,olein酸,计算机模拟,改良压电传感器。
{"title":"Application of a molecularly imprinted polymer based on the polyimide as a piezosensor selective coating for determining the oleic acid in oils","authors":"C. N. Linh, О. V. Duvanova, A. N. Zyablov","doi":"10.15826/analitika.2019.23.1.006","DOIUrl":"https://doi.org/10.15826/analitika.2019.23.1.006","url":null,"abstract":"При создании селективных пьезоэлектрических сенсоров на основе полимеров с молекулярными отпечатками (ПМО) рассмотрена возможность применения квантово-химического моделирования для выбора условий их синтеза. Исходным полимером для получения ПМО являлась полиамидокислота (ПАК), представляющая собой сополимер 1,2,4,5-бензолтетракарбоновой кислоты с 4,4′-диаминодифенилоксидом. При двухступенчатой термоимидизации раствора ПАК в присутствии темплата образовывался полиимид с молекулярным отпечатком. В качестве темплата служила олеиновая кислота. Оптимизацию структур и вычисление энергий проводили с использованием программы Gaussian 09 гибридным методом функционала плотности B3LYP в базисе 6-31G(d,p) с коррекцией ошибки суперпозиции базисных наборов BSSE (basis set superposition error). Показано, что структура радикала жирной кислоты играет решающую роль в образовании отпечатков и, соответственно, в селективности полимера. На основании проведенных квантово-химических расчетов установлено оптимальное соотношение реагентов в предполимеризационной смеси 4 : 1. Методом нековалентного импринтинга синтезированы полимеры с молекулярными отпечатками олеиновой кислоты на поверхности пьезоэлектрических сенсоров. Экспериментально оценена способность полученных сенсоров к распознаванию этой кислоты в модельных бинарных и тройных смесях жирных кислот, установлено, что сенсор на основе полимера с молекулярными отпечатками наиболее чувствителен к олеиновой кислоте, предел обнаружения которой составил 0.14 г/дм3. Пьезоэлектрические сенсоры на основе ПМО апробированы при определении жирной кислоты в растительных маслах (подсолнечное, кукурузное, оливковое, льняное, рапсовое), в качестве метода сравнения использовали хромато-масс-спектрометрию и установили, что разность результатов определения менее 10 %. Ключевые слова: полимеры с молекулярными отпечатками, полиамидокислота, полиимид, олеиновая кислота, компьютерное моделирование, модифицированные пьезосенсоры.","PeriodicalId":37743,"journal":{"name":"Analitika i Kontrol","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67249106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Improving the organic solvents purity for microextraction preconcentration of impurities 提高有机溶剂纯度,用于杂质的微萃取预富集
Q4 Chemistry Pub Date : 2019-01-01 DOI: 10.15826/analitika.2019.23.1.008
V. Krylov, P. V. Mosygin, L. Smirnov, S. A. Bulanova, I. A. Zhituhina, G. V. Pushkarev
{"title":"Improving the organic solvents purity for microextraction preconcentration of impurities","authors":"V. Krylov, P. V. Mosygin, L. Smirnov, S. A. Bulanova, I. A. Zhituhina, G. V. Pushkarev","doi":"10.15826/analitika.2019.23.1.008","DOIUrl":"https://doi.org/10.15826/analitika.2019.23.1.008","url":null,"abstract":"","PeriodicalId":37743,"journal":{"name":"Analitika i Kontrol","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67249491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of modifier nature on the preconcentration efficiency of rutin and quercetin on the magnetite nanoparticles 改性剂性质对芦丁、槲皮素在磁铁矿纳米颗粒上富集效率的影响
Q4 Chemistry Pub Date : 2019-01-01 DOI: 10.15826/ANALITIKA.2019.23.2.012
I. S. Reshetnikova, S. S. Aleksenko, S. Shtykov
{"title":"Effect of modifier nature on the preconcentration efficiency of rutin and quercetin on the magnetite nanoparticles","authors":"I. S. Reshetnikova, S. S. Aleksenko, S. Shtykov","doi":"10.15826/ANALITIKA.2019.23.2.012","DOIUrl":"https://doi.org/10.15826/ANALITIKA.2019.23.2.012","url":null,"abstract":"","PeriodicalId":37743,"journal":{"name":"Analitika i Kontrol","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67250098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analytical control of food systems on the acrylamide content using the method of highly efficient liquid chromatography with mass-spectrometric detection 高效液相色谱-质谱法检测食品体系中丙烯酰胺含量的分析控制
Q4 Chemistry Pub Date : 2019-01-01 DOI: 10.15826/analitika.2019.23.3.002
A. V. Kulikovskii, N. Vostrikova, O. Kuznetsova, A. Semenova, A. Ivankin
{"title":"Analytical control of food systems on the acrylamide content using the method of highly efficient liquid chromatography with mass-spectrometric detection","authors":"A. V. Kulikovskii, N. Vostrikova, O. Kuznetsova, A. Semenova, A. Ivankin","doi":"10.15826/analitika.2019.23.3.002","DOIUrl":"https://doi.org/10.15826/analitika.2019.23.3.002","url":null,"abstract":"","PeriodicalId":37743,"journal":{"name":"Analitika i Kontrol","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67250299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Sample injection of aromatic compounds from passive concentrators into multicapillary column by the thermal desorption method 用热解吸法将被动浓缩器中的芳香族化合物样品注入多毛细管柱
Q4 Chemistry Pub Date : 2019-01-01 DOI: 10.15826/analitika.2019.23.3.003
V. M. Gruznov, M. Baldin, A. Malysheva
{"title":"Sample injection of aromatic compounds from passive concentrators into multicapillary column by the thermal desorption method","authors":"V. M. Gruznov, M. Baldin, A. Malysheva","doi":"10.15826/analitika.2019.23.3.003","DOIUrl":"https://doi.org/10.15826/analitika.2019.23.3.003","url":null,"abstract":"","PeriodicalId":37743,"journal":{"name":"Analitika i Kontrol","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67250821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Determination of trace elements in plants using the direct current arc atomic-emission spectrometry 用直流电弧原子发射光谱法测定植物中微量元素
Q4 Chemistry Pub Date : 2019-01-01 DOI: 10.15826/analitika.2019.23.3.011
I. E. Vasil’eva, E. Shabanova
Plants connect together the atmosphere, the biosphere and the hydrosphere, participate in the migration of chemical elements and indicate an anthropogenic environmental pollution. For this reason, it is important to determine the content of a wide range of essential and toxic elements in plants. Atomic emission spectrometry with different sources of excitation of atoms is one of the most frequently used instrumental methods for determining the elemental composition of plants. Express determination of 23 essential and toxic elements in plant powders (without ashing and acid decomposition) using the atomic emission spectrometry with arc discharge (DC-arc AES) was developed. The special ways of obtaining spectra and of spectral information processing provided an increased accuracy of the analytical results in the concentration ranges from n ∙(10 -6 -10 -4 ) to 10 wt. %. The trueness of the results of the developed technique was verified by the means of the encrypted certified reference materials of the plants and matching them with the results obtained by the certified techniques of atomic emission and mass spectrometry with inductively coupled plasma. The application of the DC-arc AES technique to determine trace elements in plants from the ecologically clean and polluted areas with different landscapes, provided new analytical data for the interdisciplinary research. These data are traceable to the well-known international certified reference materials of plants.
植物连接大气、生物圈和水圈,参与化学元素的迁移,指示人为的环境污染。因此,测定植物中各种必需元素和有毒元素的含量是很重要的。不同原子激发源的原子发射光谱法是测定植物元素组成最常用的仪器方法之一。建立了电弧原子发射光谱法(DC-arc AES)快速测定植物粉末(无灰化和酸分解)中23种必需和有毒元素的方法。特殊的光谱获取和光谱信息处理方法提高了n∙(10 -6 -10 -4)至10 wt. %浓度范围内分析结果的准确性。通过加密的植物标准物质,并将其与电感耦合等离子体原子发射和质谱认证技术所得的结果进行比对,验证了所开发技术结果的准确性。应用直流电弧原子发射光谱技术测定不同景观生态清洁和污染地区植物中微量元素,为跨学科研究提供了新的分析数据。这些数据可追溯至国际知名的经认证的植物参考物质。
{"title":"Determination of trace elements in plants using the direct current arc atomic-emission spectrometry","authors":"I. E. Vasil’eva, E. Shabanova","doi":"10.15826/analitika.2019.23.3.011","DOIUrl":"https://doi.org/10.15826/analitika.2019.23.3.011","url":null,"abstract":"Plants connect together the atmosphere, the biosphere and the hydrosphere, participate in the migration of chemical elements and indicate an anthropogenic environmental pollution. For this reason, it is important to determine the content of a wide range of essential and toxic elements in plants. Atomic emission spectrometry with different sources of excitation of atoms is one of the most frequently used instrumental methods for determining the elemental composition of plants. Express determination of 23 essential and toxic elements in plant powders (without ashing and acid decomposition) using the atomic emission spectrometry with arc discharge (DC-arc AES) was developed. The special ways of obtaining spectra and of spectral information processing provided an increased accuracy of the analytical results in the concentration ranges from n ∙(10 -6 -10 -4 ) to 10 wt. %. The trueness of the results of the developed technique was verified by the means of the encrypted certified reference materials of the plants and matching them with the results obtained by the certified techniques of atomic emission and mass spectrometry with inductively coupled plasma. The application of the DC-arc AES technique to determine trace elements in plants from the ecologically clean and polluted areas with different landscapes, provided new analytical data for the interdisciplinary research. These data are traceable to the well-known international certified reference materials of plants.","PeriodicalId":37743,"journal":{"name":"Analitika i Kontrol","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67251829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Determination of Catharanthus flower anthocyanins 花楸花花色苷的测定
Q4 Chemistry Pub Date : 2019-01-01 DOI: 10.15826/analitika.2019.23.1.001
V. I. Deinek, Y. Kulchenko, А. N. Sidorov, S. M. Varushkina, I. Blinova, L. А. Deineka, A. Vu
{"title":"Determination of Catharanthus flower anthocyanins","authors":"V. I. Deinek, Y. Kulchenko, А. N. Sidorov, S. M. Varushkina, I. Blinova, L. А. Deineka, A. Vu","doi":"10.15826/analitika.2019.23.1.001","DOIUrl":"https://doi.org/10.15826/analitika.2019.23.1.001","url":null,"abstract":"","PeriodicalId":37743,"journal":{"name":"Analitika i Kontrol","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67249440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Extraction-fluorimetric determination of chlorophyll "a" in the natural waters 提取-荧光法测定天然水体中叶绿素a
Q4 Chemistry Pub Date : 2019-01-01 DOI: 10.15826/analitika.2019.23.3.001
Z. Temerdashev, L. Pavlenko, Y. S. Ermakova, I. Korpakova, B. D. Eletskii
{"title":"Extraction-fluorimetric determination of chlorophyll \"a\" in the natural waters","authors":"Z. Temerdashev, L. Pavlenko, Y. S. Ermakova, I. Korpakova, B. D. Eletskii","doi":"10.15826/analitika.2019.23.3.001","DOIUrl":"https://doi.org/10.15826/analitika.2019.23.3.001","url":null,"abstract":"","PeriodicalId":37743,"journal":{"name":"Analitika i Kontrol","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67250172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Poly-4-vinylpiridinium nanosponges as modifiers of the electrophoretic systems for the charged analytes separation 聚-4-乙烯基吡啶纳米海绵作为带电分析物分离电泳系统的改性剂
Q4 Chemistry Pub Date : 2019-01-01 DOI: 10.15826/analitika.2019.23.3.006
D. Polikarpova, D. Makeeva, L. Kartsova, V. Davankov, L. Pavlova
Novel hydrophilic ionic polymer nanoparticles based on the N-alkylated hypercrosslinked poly-4-vinylpyridine (nanosponges ‒ NS ) have porous structure, pH-independent positive charge and contain the aromatic rings. These nanosponges have not yet been studied in the capillary electrophoresis mode, but their characteristics suggest the possibility of creating the fused silica capillary walls coating for the separation of anionic and cationic analytes. In the current research, the authors, for the first time, have proposed the approaches to the formation of coatings based on the nanosponges with a molecular weight of 400 and 10 kDa. It was established that the stability of such coatings could be achieved by the introduction of NS into the background electrolyte. The pH range of background electrolytes for the subsequent electrophoretic experiments was determined to be from 4 to 9. The NS-based coatings were compared with the previously investigated coatings based on the crosslinked polystyrene nanoparticles ( NPs ), functionalized with the quaternary ammonium groups. Capillaries modified with NS (400 kDa) were tested for the electrophoretic separations of wide range of analytes: carboxylic acids, aminoacids, fluoroquinoline antibiotics, biogenic amines, and proteins. The separation selectivity of carboxylic acids on the NS-modified capillaries was different from the separation selectivity on the capillaries modified with NPs, functionalized with quaternary ammonium groups. NS affect the separation selectivity of aminoacids by interacting with these analytes, while for fluoroquinoline antibiotics NS act as an agent generating the reversed electroosmotic flow ( EOF ). The modification of fused silica capillary walls by NS with molecular mass of 400 kDa prevented the sorption of biogeniс amines and lysozyme protein during their electrophoretic separation.
基于n -烷基化超交联聚-4-乙烯吡啶的新型亲水离子聚合物纳米粒子(纳米海绵- NS)具有多孔结构、不受ph影响的正电荷和芳香环。这些纳米海绵尚未在毛细管电泳模式下进行研究,但它们的特性表明,有可能创建用于分离阴离子和阳离子分析物的熔融二氧化硅毛细管壁涂层。在本研究中,作者首次提出了在分子量为400和10 kDa的纳米海绵的基础上形成涂层的方法。通过在背景电解质中引入NS,可以实现这种涂层的稳定性。后续电泳实验的背景电解质pH范围确定为4 ~ 9。并与之前研究的基于季铵盐官能团的交联聚苯乙烯纳米颗粒(NPs)的涂料进行了比较。用NS (400 kDa)修饰的毛细管进行了电泳分离测试,用于广泛的分析物:羧酸、氨基酸、氟喹啉抗生素、生物胺和蛋白质。羧酸在ns修饰的毛细管上的分离选择性与用季铵基官能团修饰的NPs修饰的毛细管上的分离选择性不同。NS通过与这些分析物相互作用影响氨基酸的分离选择性,而对于氟喹啉类抗生素,NS作为一种产生反电渗透流(EOF)的剂。用分子量为400 kDa的NS对熔融石英毛细管壁进行修饰,防止了生物胺和溶菌酶蛋白在电泳分离过程中的吸附。
{"title":"Poly-4-vinylpiridinium nanosponges as modifiers of the electrophoretic systems for the charged analytes separation","authors":"D. Polikarpova, D. Makeeva, L. Kartsova, V. Davankov, L. Pavlova","doi":"10.15826/analitika.2019.23.3.006","DOIUrl":"https://doi.org/10.15826/analitika.2019.23.3.006","url":null,"abstract":"Novel hydrophilic ionic polymer nanoparticles based on the N-alkylated hypercrosslinked poly-4-vinylpyridine (nanosponges ‒ NS ) have porous structure, pH-independent positive charge and contain the aromatic rings. These nanosponges have not yet been studied in the capillary electrophoresis mode, but their characteristics suggest the possibility of creating the fused silica capillary walls coating for the separation of anionic and cationic analytes. In the current research, the authors, for the first time, have proposed the approaches to the formation of coatings based on the nanosponges with a molecular weight of 400 and 10 kDa. It was established that the stability of such coatings could be achieved by the introduction of NS into the background electrolyte. The pH range of background electrolytes for the subsequent electrophoretic experiments was determined to be from 4 to 9. The NS-based coatings were compared with the previously investigated coatings based on the crosslinked polystyrene nanoparticles ( NPs ), functionalized with the quaternary ammonium groups. Capillaries modified with NS (400 kDa) were tested for the electrophoretic separations of wide range of analytes: carboxylic acids, aminoacids, fluoroquinoline antibiotics, biogenic amines, and proteins. The separation selectivity of carboxylic acids on the NS-modified capillaries was different from the separation selectivity on the capillaries modified with NPs, functionalized with quaternary ammonium groups. NS affect the separation selectivity of aminoacids by interacting with these analytes, while for fluoroquinoline antibiotics NS act as an agent generating the reversed electroosmotic flow ( EOF ). The modification of fused silica capillary walls by NS with molecular mass of 400 kDa prevented the sorption of biogeniс amines and lysozyme protein during their electrophoretic separation.","PeriodicalId":37743,"journal":{"name":"Analitika i Kontrol","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67250516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Analitika i Kontrol
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1