首页 > 最新文献

2009 Data Compression Conference最新文献

英文 中文
Communicating the Difference of Correlated Gaussian Sources over a MAC 在MAC上通信相关高斯源的差异
Pub Date : 2008-12-05 DOI: 10.1109/DCC.2009.17
R. Soundararajan, S. Vishwanath
This paper considers the problem of transmitting the difference of two positively correlated Gaussian sources over a two-user additive Gaussian noise multiple access channel (MAC). The goal is to recover this difference within an average mean squared error distortion criterion. Each transmitter has access to only one of the two Gaussian sources and is limited by an average power constraint. In this work, a lattice coding scheme that achieves a distortion within a constant of a distortion lower bound is presented if the signal to noise ratio (SNR) is greater than a threshold. Further, uncoded transmission is shown to be worse in performance to lattice coding methods for correlation coefficients above a threshold. An alternative lattice coding scheme is also presented that can potentially improve on the performance of uncoded transmission.
研究了在双用户加性高斯噪声多址信道(MAC)上传输两个正相关高斯源的差的问题。目标是在平均均方误差失真准则内恢复这种差异。每个发射机只能访问两个高斯源中的一个,并且受到平均功率约束的限制。在这项工作中,如果信噪比(SNR)大于阈值,则提出了在失真下界常数内实现失真的晶格编码方案。此外,当相关系数高于阈值时,未编码传输的性能比晶格编码方法更差。提出了一种可替代的点阵编码方案,可以潜在地提高非编码传输的性能。
{"title":"Communicating the Difference of Correlated Gaussian Sources over a MAC","authors":"R. Soundararajan, S. Vishwanath","doi":"10.1109/DCC.2009.17","DOIUrl":"https://doi.org/10.1109/DCC.2009.17","url":null,"abstract":"This paper considers the problem of transmitting the difference of two positively correlated Gaussian sources over a two-user additive Gaussian noise multiple access channel (MAC). The goal is to recover this difference within an average mean squared error distortion criterion. Each transmitter has access to only one of the two Gaussian sources and is limited by an average power constraint. In this work, a lattice coding scheme that achieves a distortion within a constant of a distortion lower bound is presented if the signal to noise ratio (SNR) is greater than a threshold. Further, uncoded transmission is shown to be worse in performance to lattice coding methods for correlation coefficients above a threshold. An alternative lattice coding scheme is also presented that can potentially improve on the performance of uncoded transmission.","PeriodicalId":377880,"journal":{"name":"2009 Data Compression Conference","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2008-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114288191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Low-Memory Adaptive Prefix Coding 低内存自适应前缀编码
Pub Date : 2008-11-21 DOI: 10.1109/DCC.2009.61
T. Gagie, Marek Karpinski, Yakov Nekrich
In this paper we study the adaptive prefix coding problem in  cases where the size of the input alphabet is large.  We present an online prefix coding algorithm that uses  $O(sigma^{1 / lambda + epsilon}) $ bits of space for any constants $eps≫0$, $lambda≫1$, and encodes the string of symbols in  $O(log log sigma)$ time per symbol  emph{in the worst case}, where $sigma$ is  the size of the alphabet.  The upper bound on the encoding length is  $lambda n H (s) +(lambda / ln 2 + 2 + epsilon) n +  O (sigma^{1 / lambda} log^2 sigma)$ bits.
本文研究了输入字母较大情况下的自适应前缀编码问题。我们提出了一种在线前缀编码算法,该算法对任何常量$eps≫0$、$lambda≫1$使用$O(sigma^{1 / lambda + epsilon}) $位空间,并且在emph{最坏的情况下},以$O(log log sigma)$时间对每个符号进行编码,其中$sigma$是字母表的大小。编码长度的上限是$lambda n H (s) +(lambda / ln 2 + 2 + epsilon) n +  O (sigma^{1 / lambda} log^2 sigma)$位。
{"title":"Low-Memory Adaptive Prefix Coding","authors":"T. Gagie, Marek Karpinski, Yakov Nekrich","doi":"10.1109/DCC.2009.61","DOIUrl":"https://doi.org/10.1109/DCC.2009.61","url":null,"abstract":"In this paper we study the adaptive prefix coding problem in  cases where the size of the input alphabet is large.  We present an online prefix coding algorithm that uses  $O(sigma^{1 / lambda + epsilon}) $ bits of space for any constants $eps≫0$, $lambda≫1$, and encodes the string of symbols in  $O(log log sigma)$ time per symbol  emph{in the worst case}, where $sigma$ is  the size of the alphabet.  The upper bound on the encoding length is  $lambda n H (s) +(lambda / ln 2 + 2 + epsilon) n +  O (sigma^{1 / lambda} log^2 sigma)$ bits.","PeriodicalId":377880,"journal":{"name":"2009 Data Compression Conference","volume":"84 11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2008-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130067961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
2009 Data Compression Conference
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1