首页 > 最新文献

International Journal of Safety and Security Engineering最新文献

英文 中文
Bibliometric Analysis of Electric Vehicle Adoption Research: Trends, Implications, and Future Directions 电动汽车采用研究的文献计量分析:趋势、影响和未来方向
Q3 Engineering Pub Date : 2023-11-10 DOI: 10.18280/ijsse.130503
Edi Purwanto, Agustinus Purna Irawan
ABSTRACT
{"title":"Bibliometric Analysis of Electric Vehicle Adoption Research: Trends, Implications, and Future Directions","authors":"Edi Purwanto, Agustinus Purna Irawan","doi":"10.18280/ijsse.130503","DOIUrl":"https://doi.org/10.18280/ijsse.130503","url":null,"abstract":"ABSTRACT","PeriodicalId":37802,"journal":{"name":"International Journal of Safety and Security Engineering","volume":"114 6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135137261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of Landslide Using Resistivity Method in the Avalanche Area of Tolnaku, Kupang Regency, East Nusa Tenggara, Indonesia 用电阻率法分析印尼东努沙登加拉库邦县托尔纳库雪崩区滑坡
Q3 Engineering Pub Date : 2023-11-10 DOI: 10.18280/ijsse.130516
Hery Leo Sianturi, Adi Susilo, Juliany N. Mohamad, Redi K. Pingak
ABSTRACT
{"title":"Analysis of Landslide Using Resistivity Method in the Avalanche Area of Tolnaku, Kupang Regency, East Nusa Tenggara, Indonesia","authors":"Hery Leo Sianturi, Adi Susilo, Juliany N. Mohamad, Redi K. Pingak","doi":"10.18280/ijsse.130516","DOIUrl":"https://doi.org/10.18280/ijsse.130516","url":null,"abstract":"ABSTRACT","PeriodicalId":37802,"journal":{"name":"International Journal of Safety and Security Engineering","volume":"114 44","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135136227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing IoT Security with Trust-Based Mechanism for Mitigating Black Hole Attacks 利用基于信任的机制增强物联网安全,缓解黑洞攻击
Q3 Engineering Pub Date : 2023-11-10 DOI: 10.18280/ijsse.130515
Mahalakshmi Govindaraj, Suresh Arumugam
ABSTRACT
{"title":"Enhancing IoT Security with Trust-Based Mechanism for Mitigating Black Hole Attacks","authors":"Mahalakshmi Govindaraj, Suresh Arumugam","doi":"10.18280/ijsse.130515","DOIUrl":"https://doi.org/10.18280/ijsse.130515","url":null,"abstract":"ABSTRACT","PeriodicalId":37802,"journal":{"name":"International Journal of Safety and Security Engineering","volume":"112 45","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135136924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reducing Occupational Risks in Industrial Processes: Analysis and Recommendations for Improving Safety in Production Equipment and Facilities 降低工业过程中的职业风险:改进生产设备和设施安全的分析和建议
Q3 Engineering Pub Date : 2023-11-10 DOI: 10.18280/ijsse.130502
Marina Vladimirovna Grafkina, Evgeniya Yurevna Sviridova, Elena Viktorovna Goryacheva
ABSTRACT
{"title":"Reducing Occupational Risks in Industrial Processes: Analysis and Recommendations for Improving Safety in Production Equipment and Facilities","authors":"Marina Vladimirovna Grafkina, Evgeniya Yurevna Sviridova, Elena Viktorovna Goryacheva","doi":"10.18280/ijsse.130502","DOIUrl":"https://doi.org/10.18280/ijsse.130502","url":null,"abstract":"ABSTRACT","PeriodicalId":37802,"journal":{"name":"International Journal of Safety and Security Engineering","volume":"114 33","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135137239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of Human Survivors in Natural Disasters Through Body Odor Analysis 通过体味分析识别自然灾害中的幸存者
Q3 Engineering Pub Date : 2023-11-10 DOI: 10.18280/ijsse.130508
Joanie B. Houinsou, Kokou M. Assogba, Roland C. Houessouvo
ABSTRACT
{"title":"Identification of Human Survivors in Natural Disasters Through Body Odor Analysis","authors":"Joanie B. Houinsou, Kokou M. Assogba, Roland C. Houessouvo","doi":"10.18280/ijsse.130508","DOIUrl":"https://doi.org/10.18280/ijsse.130508","url":null,"abstract":"ABSTRACT","PeriodicalId":37802,"journal":{"name":"International Journal of Safety and Security Engineering","volume":"92 25","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135092065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Evaluation of Community Adoption of the InaRISK BNPB Platform for Disaster Management: An Application of the Technology Acceptance Model (TAM) inrisk BNPB灾害管理平台的社区应用评估——技术接受模型(TAM)的应用
Q3 Engineering Pub Date : 2023-09-28 DOI: 10.18280/ijsse.130409
Erni Suharini, None Supriyadi, Mohammad Syifauddin, Ervando Tommy Al-Hanif, Edi Kurniawan, Satya Budi Nugraha
ABSTRACT
{"title":"An Evaluation of Community Adoption of the InaRISK BNPB Platform for Disaster Management: An Application of the Technology Acceptance Model (TAM)","authors":"Erni Suharini, None Supriyadi, Mohammad Syifauddin, Ervando Tommy Al-Hanif, Edi Kurniawan, Satya Budi Nugraha","doi":"10.18280/ijsse.130409","DOIUrl":"https://doi.org/10.18280/ijsse.130409","url":null,"abstract":"ABSTRACT","PeriodicalId":37802,"journal":{"name":"International Journal of Safety and Security Engineering","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135386541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrated Sensor-Based Smart Mannequin for Injury Detection in Armored Vehicle 基于集成传感器的装甲车辆损伤检测智能模型
Q3 Engineering Pub Date : 2023-09-28 DOI: 10.18280/ijsse.130404
Giva Andriana Mutiara, Periyadi Periyadi, Lisda Meisaroh, Muhammad Rizqy Alfarisi, Wildan Muhammad Yasin, Nadya Nanda Adisty, Muhammad Aulia Rifqi Zain
{"title":"Integrated Sensor-Based Smart Mannequin for Injury Detection in Armored Vehicle","authors":"Giva Andriana Mutiara, Periyadi Periyadi, Lisda Meisaroh, Muhammad Rizqy Alfarisi, Wildan Muhammad Yasin, Nadya Nanda Adisty, Muhammad Aulia Rifqi Zain","doi":"10.18280/ijsse.130404","DOIUrl":"https://doi.org/10.18280/ijsse.130404","url":null,"abstract":"","PeriodicalId":37802,"journal":{"name":"International Journal of Safety and Security Engineering","volume":"49 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135386243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Capitalizing on Blockchain Technology for Efficient Crowdfunding: An Exploration of Ethereum's Smart Contracts 利用区块链技术进行高效众筹:对以太坊智能合约的探索
Q3 Engineering Pub Date : 2023-09-28 DOI: 10.18280/ijsse.130415
Cynthia Jayapal, Arputha Rathina Xavier, Poonguzhali Arunachalam
ABSTRACT
{"title":"Capitalizing on Blockchain Technology for Efficient Crowdfunding: An Exploration of Ethereum's Smart Contracts","authors":"Cynthia Jayapal, Arputha Rathina Xavier, Poonguzhali Arunachalam","doi":"10.18280/ijsse.130415","DOIUrl":"https://doi.org/10.18280/ijsse.130415","url":null,"abstract":"ABSTRACT","PeriodicalId":37802,"journal":{"name":"International Journal of Safety and Security Engineering","volume":"97 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135386730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Implementing A Seismic Sensor-Driven Disaster Management System for Efficient Tsunami Early Warnings in the Arabian Peninsula 在阿拉伯半岛实施地震传感器驱动的灾害管理系统,实现有效的海啸预警
Q3 Engineering Pub Date : 2023-09-28 DOI: 10.18280/ijsse.130416
Minu Theresa Mathew, Zeyad Ismail
ABSTRACT
{"title":"Implementing A Seismic Sensor-Driven Disaster Management System for Efficient Tsunami Early Warnings in the Arabian Peninsula","authors":"Minu Theresa Mathew, Zeyad Ismail","doi":"10.18280/ijsse.130416","DOIUrl":"https://doi.org/10.18280/ijsse.130416","url":null,"abstract":"ABSTRACT","PeriodicalId":37802,"journal":{"name":"International Journal of Safety and Security Engineering","volume":"67 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135387686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of a Malicious Network Traffic Intrusion Detection System Using Deep Learning 基于深度学习的恶意网络流量入侵检测系统的开发
Q3 Engineering Pub Date : 2023-09-28 DOI: 10.18280/ijsse.130401
Olisaemeka F. Isife, Kennedy Okokpujie, Imhade P. Okokpujie, Roselyn E. Subair, Akingunsoye Adenugba Vincent, Morayo E. Awomoyi
With the exponential surge in the number of internet-connected devices, the attack surface for potential cyber threats has correspondingly expanded. Such a landscape necessitates the evolution of intrusion detection systems to counter the increasingly sophisticated mechanisms employed by cyber attackers. Traditional machine learning methods, coupled with existing deep learning implementations, are observed to exhibit limited proficiency due to their reliance on outdated datasets. Their performance is further compromised by elevated false positive rates, decreased detection rates, and an inability to efficiently detect novel attacks. In an attempt to address these challenges, this study proposes a deep learning-based system specifically designed for the detection of malicious network traffic. Three distinct deep learning models were employed: Deep Neural Networks (DNN), Long Short-Term Memory (LSTM), and Gated Recurrent Units (GRU). These models were trained using two contemporary benchmark intrusion detection datasets: the CICIDS 2017 and the Coburg Intrusion Detection Data Sets (CIDDS). A robust preprocessing procedure was conducted to merge these datasets based on common and essential features, creating a comprehensive dataset for model training. Two separate experimental setups were utilized to configure these models. Among the three models, the LSTM displayed superior performance in both experimental configurations. It achieved an accuracy of 98.09%, a precision of 98.14%, an F1-Score of 98.09%, a True Positive Rate (TPR) of 98.05%, a True Negative Rate (TNR) of 99.69%, a False Positive Rate (FPR) of 0.31%, and a False Negative Rate (FNR) of 1.95%.
随着联网设备数量呈指数级增长,潜在网络威胁的攻击面也相应扩大。这种情况要求入侵检测系统的发展,以应对网络攻击者所采用的日益复杂的机制。传统的机器学习方法,加上现有的深度学习实现,由于依赖过时的数据集,被观察到表现出有限的熟练程度。由于假阳性率升高、检测率下降以及无法有效检测新型攻击,它们的性能进一步受到损害。为了应对这些挑战,本研究提出了一种专门用于检测恶意网络流量的基于深度学习的系统。采用了三种不同的深度学习模型:深度神经网络(DNN)、长短期记忆(LSTM)和门控循环单元(GRU)。这些模型使用两个当代基准入侵检测数据集进行训练:CICIDS 2017和Coburg入侵检测数据集(CIDDS)。基于共同特征和基本特征,对这些数据集进行鲁棒预处理,创建一个全面的数据集用于模型训练。使用两个单独的实验装置来配置这些模型。在三种模型中,LSTM在两种实验配置下都表现出较好的性能。准确率为98.09%,精密度为98.14%,F1-Score为98.09%,真阳性率(TPR)为98.05%,真阴性率(TNR)为99.69%,假阳性率(FPR)为0.31%,假阴性率(FNR)为1.95%。
{"title":"Development of a Malicious Network Traffic Intrusion Detection System Using Deep Learning","authors":"Olisaemeka F. Isife, Kennedy Okokpujie, Imhade P. Okokpujie, Roselyn E. Subair, Akingunsoye Adenugba Vincent, Morayo E. Awomoyi","doi":"10.18280/ijsse.130401","DOIUrl":"https://doi.org/10.18280/ijsse.130401","url":null,"abstract":"With the exponential surge in the number of internet-connected devices, the attack surface for potential cyber threats has correspondingly expanded. Such a landscape necessitates the evolution of intrusion detection systems to counter the increasingly sophisticated mechanisms employed by cyber attackers. Traditional machine learning methods, coupled with existing deep learning implementations, are observed to exhibit limited proficiency due to their reliance on outdated datasets. Their performance is further compromised by elevated false positive rates, decreased detection rates, and an inability to efficiently detect novel attacks. In an attempt to address these challenges, this study proposes a deep learning-based system specifically designed for the detection of malicious network traffic. Three distinct deep learning models were employed: Deep Neural Networks (DNN), Long Short-Term Memory (LSTM), and Gated Recurrent Units (GRU). These models were trained using two contemporary benchmark intrusion detection datasets: the CICIDS 2017 and the Coburg Intrusion Detection Data Sets (CIDDS). A robust preprocessing procedure was conducted to merge these datasets based on common and essential features, creating a comprehensive dataset for model training. Two separate experimental setups were utilized to configure these models. Among the three models, the LSTM displayed superior performance in both experimental configurations. It achieved an accuracy of 98.09%, a precision of 98.14%, an F1-Score of 98.09%, a True Positive Rate (TPR) of 98.05%, a True Negative Rate (TNR) of 99.69%, a False Positive Rate (FPR) of 0.31%, and a False Negative Rate (FNR) of 1.95%.","PeriodicalId":37802,"journal":{"name":"International Journal of Safety and Security Engineering","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135420780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
International Journal of Safety and Security Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1