首页 > 最新文献

遥感学报最新文献

英文 中文
A Siamese Nested-UNet for change detection in Posterior Probability Space (SNU-PS) 后验概率空间(SNU-PS)变化检测的Siamese嵌套unet
Pub Date : 2023-01-01 DOI: 10.11834/jrs.20233070
Chuanghai ZHU, Xuehong CHEN, Jin CHEN, Yuheng YUAN, Kai TANG
{"title":"A Siamese Nested-UNet for change detection in Posterior Probability Space (SNU-PS)","authors":"Chuanghai ZHU, Xuehong CHEN, Jin CHEN, Yuheng YUAN, Kai TANG","doi":"10.11834/jrs.20233070","DOIUrl":"https://doi.org/10.11834/jrs.20233070","url":null,"abstract":"","PeriodicalId":38304,"journal":{"name":"Yaogan Xuebao/Journal of Remote Sensing","volume":"66 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135794724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of topography analysis based on multi-source data in the construction of the International Lunar Research Station 基于多源数据的地形分析在国际月球研究站建设中的应用
Pub Date : 2023-01-01 DOI: 10.11834/jrs.20233011
Xing DU, Zhizhong KANG, Teng HU, Meng XIAO, Mo LI
{"title":"Application of topography analysis based on multi-source data in the construction of the International Lunar Research Station","authors":"Xing DU, Zhizhong KANG, Teng HU, Meng XIAO, Mo LI","doi":"10.11834/jrs.20233011","DOIUrl":"https://doi.org/10.11834/jrs.20233011","url":null,"abstract":"","PeriodicalId":38304,"journal":{"name":"Yaogan Xuebao/Journal of Remote Sensing","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135101431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of paddy rice mapping with remote sensing technology 水稻遥感制图研究进展
Pub Date : 2023-01-01 DOI: 10.11834/jrs.20233014
Xinyi Gao, Hong Chi, Jinliang Huang, Feng Ling, Yifei Han, Xiaofeng Jia, Yifan Li, Duan Huang, Jinwei Dong
æ°´ç¨»æ˜¯äººç±»çš„ä¸»è¦ç²®é£Ÿä½œç‰©ä¹‹ä¸€ï¼ŒåŠæ—¶å‡†ç¡®çš„èŽ·å–æ°´ç¨»é¢ç§¯åˆ†å¸ƒå’Œæ—¶ç©ºå˜åŒ–å¯¹ç²®é£Ÿæ”¿ç­–åˆ¶å®šå ·æœ‰é‡è¦çš„å‚è€ƒæ„ä¹‰ã€‚æœ¬æ–‡å›´ç»•â€œæ°´ç¨»é¥æ„Ÿåˆ¶å›¾â€ç ”ç©¶ä¸»é¢˜ï¼Œé¦–å ˆå›žé¡¾è°ƒç ”å›½å† å¤–æ–‡çŒ®èµ„æ–™ï¼Œç³»ç»Ÿæ¢³ç†äº†æ°´ç¨»çš„ç”Ÿç†ç”Ÿé•¿è¿‡ç¨‹å’Œä¸»è¦çš„ç§æ¤æ¨¡å¼ã€‚å ¨çƒèŒƒå›´å† ï¼Œæ°´ç¨»ç§æ¤é›†ä¸­åœ¨ä¸œå—äºšåœ°åŒºï¼›ä»Žå ¨å›½èŒƒå›´çœ‹ï¼Œå•å­£ç¨»äº§åŒºä¸»è¦ä½äºŽä¸œåŒ—åœ°åŒºå’Œé•¿æ±Ÿä¸­ä¸‹æ¸¸åœ°åŒºï¼›åŒå­£ç¨»å’Œä¸‰å­£ç¨»äº§åŒºä½äºŽæ¹–å—ã€æ±Ÿè¥¿ã€å¹¿ä¸œç­‰åŽå—çœä»½ã€‚å ¶æ¬¡ï¼Œå—äº‘é›¨å½±å“ï¼Œæ—©æœŸæ°´ç¨»åˆ¶å›¾ä»¥é›·è¾¾æ•°æ®ä¸ºä¸»ï¼Œéšç€é¥æ„Ÿæ•°æ®æºæ—¥ç›Šä¸°å¯Œï¼Œå ‰å­¦å’Œé›·è¾¾æ•°æ®ååŒåº”ç”¨äºŽæ°´ç¨»é¥æ„Ÿåˆ¶å›¾ï¼›åœ¨é‡ç‚¹åˆ†æžæ°´ç¨»çš„â€œï¼ˆé¥æ„Ÿï¼‰ä¿¡å·-空间-æ—¶é—´â€ç‰¹å¾çš„åŸºç¡€ä¸Šï¼ŒæŽ¢è®¨äº†æ°´ç¨»é¥æ„Ÿåˆ¶å›¾ä¸­å ¸åž‹å ‰å­¦æ¤è¢«æŒ‡æ•°å’Œé›·è¾¾åŽå‘æ•£å°„ç³»æ•°ï¼›å¹¶ä»Žä¼ ç»Ÿæœºå™¨å­¦ä¹ å’Œæ·±åº¦å­¦ä¹ ä¸¤ä¸ªæ–¹é¢æ€»ç»“äº†çŽ°é˜¶æ®µæ°´ç¨»é¥æ„Ÿåˆ¶å›¾çš„ä¸»æµæ–¹æ³•ã€‚ç„¶åŽï¼Œä»Žæœºå™¨å­¦ä¹ æ¨¡åž‹ã€å¤šæºé¥æ„Ÿæ•°æ®èžåˆä»¥åŠé¥æ„Ÿè®¡ç®—äº‘å¹³å°ä¸‰ä¸ªæ–¹é¢å½’çº³äº†æ°´ç¨»é¥æ„Ÿåˆ¶å›¾çš„åº”ç”¨çŽ°çŠ¶ã€‚æ€»ç»“å‘çŽ°ç›®å‰æ°´ç¨»åˆ¶å›¾ç ”ç©¶å­˜åœ¨ä»¥ä¸‹éš¾ç‚¹ï¼šï¼ˆ1)由于相似生长周期植物的存在导致水稻的漏分、错分;(2ï¼‰å ‰å­¦å’Œé›·è¾¾æ•°æ®éƒ½å­˜åœ¨æ—¶åºè§‚æµ‹ä¸è¿žç»­çš„çŽ°è±¡ï¼›ï¼ˆ3ï¼‰åœ°å½¢ç ´ç¢ŽåŒºåŸŸæˆ–å¤šå­£ã€è½®ä½œæ°´ç¨»ç§æ¤åœ°åŒºçš„åˆ¶å›¾å›°éš¾è¾ƒå¤§ï¼›ï¼ˆ4)制图方法的泛化问题。针对这些问题,本文从水稻物候特征发掘、水稻时序观测数据获取手段、水稻遥感制图空间分辨率改进等方面探讨了水稻遥感制图的发展方向:(1)水稻物候期遥感信号特征挖掘;(2)覆盖水稻完整生长期的时序遥感数据获取;(3)水稻遥感制图空间分辨率提升;(4ï¼‰å ‰å­¦å’Œé›·è¾¾æ•°æ®çš„ååŒåº”ç”¨ã€‚
我在§§§§§§""""上写道:"我在这里是为了让您的孩子能够在这里学习。炖汤:炖肉、炖鸡、炖牛肉、炖羊肉、炖猪肉、炖牛肉、炖羊肉、炖鲫鱼、炖鲤鱼、炖鲫鱼、炖鲤鱼、炖鲫鱼、炖鲤鱼、炖鲫鱼。炖汤:炖汤的时候加入适量的葱花和姜末,炖的时候加入适量的姜末和葱花,炖的时候加入适量的盐和胡椒粉。炖菜炖汤:炖汤的时候要注意汤汁的温度,因为汤汁的温度会影响炖煮的时间,炖煮的时间越长,炖煮的时间越长,炖煮的时间越短。我很高兴您能来参加我们的活动。我很高兴您能来参加我们的活动。第1步:将腌制好的鱼放入锅中,加入适量的清水,搅拌均匀后即可食用。´ç¢ŽåŒºåŸŸæˆ–多季、轮作水稻种植地区的制图困难较大;(4)制图方法的泛化问题。针对这些问题,本文从水稻物候特征发掘、水稻时序观测数据获取手段、水稻遥感制图空间分辨率改进等方面探讨了水稻遥感制图的发展方向:(1)水稻物候期遥感信号特征挖掘;(2)覆盖水稻完整生长期的时序遥感数据获取;(3)水稻遥感制图空间分辨率提升;(4)å炖肉的做法
{"title":"A review of paddy rice mapping with remote sensing technology","authors":"Xinyi Gao, Hong Chi, Jinliang Huang, Feng Ling, Yifei Han, Xiaofeng Jia, Yifan Li, Duan Huang, Jinwei Dong","doi":"10.11834/jrs.20233014","DOIUrl":"https://doi.org/10.11834/jrs.20233014","url":null,"abstract":"æ°´ç¨»æ˜¯äººç±»çš„ä¸»è¦ç²®é£Ÿä½œç‰©ä¹‹ä¸€ï¼ŒåŠæ—¶å‡†ç¡®çš„èŽ·å–æ°´ç¨»é¢ç§¯åˆ†å¸ƒå’Œæ—¶ç©ºå˜åŒ–å¯¹ç²®é£Ÿæ”¿ç­–åˆ¶å®šå ·æœ‰é‡è¦çš„å‚è€ƒæ„ä¹‰ã€‚æœ¬æ–‡å›´ç»•â€œæ°´ç¨»é¥æ„Ÿåˆ¶å›¾â€ç ”ç©¶ä¸»é¢˜ï¼Œé¦–å ˆå›žé¡¾è°ƒç ”å›½å† å¤–æ–‡çŒ®èµ„æ–™ï¼Œç³»ç»Ÿæ¢³ç†äº†æ°´ç¨»çš„ç”Ÿç†ç”Ÿé•¿è¿‡ç¨‹å’Œä¸»è¦çš„ç§æ¤æ¨¡å¼ã€‚å ¨çƒèŒƒå›´å† ï¼Œæ°´ç¨»ç§æ¤é›†ä¸­åœ¨ä¸œå—äºšåœ°åŒºï¼›ä»Žå ¨å›½èŒƒå›´çœ‹ï¼Œå•å­£ç¨»äº§åŒºä¸»è¦ä½äºŽä¸œåŒ—åœ°åŒºå’Œé•¿æ±Ÿä¸­ä¸‹æ¸¸åœ°åŒºï¼›åŒå­£ç¨»å’Œä¸‰å­£ç¨»äº§åŒºä½äºŽæ¹–å—ã€æ±Ÿè¥¿ã€å¹¿ä¸œç­‰åŽå—çœä»½ã€‚å ¶æ¬¡ï¼Œå—äº‘é›¨å½±å“ï¼Œæ—©æœŸæ°´ç¨»åˆ¶å›¾ä»¥é›·è¾¾æ•°æ®ä¸ºä¸»ï¼Œéšç€é¥æ„Ÿæ•°æ®æºæ—¥ç›Šä¸°å¯Œï¼Œå ‰å­¦å’Œé›·è¾¾æ•°æ®ååŒåº”ç”¨äºŽæ°´ç¨»é¥æ„Ÿåˆ¶å›¾ï¼›åœ¨é‡ç‚¹åˆ†æžæ°´ç¨»çš„â€œï¼ˆé¥æ„Ÿï¼‰ä¿¡å·-空间-æ—¶é—´â€ç‰¹å¾çš„åŸºç¡€ä¸Šï¼ŒæŽ¢è®¨äº†æ°´ç¨»é¥æ„Ÿåˆ¶å›¾ä¸­å ¸åž‹å ‰å­¦æ¤è¢«æŒ‡æ•°å’Œé›·è¾¾åŽå‘æ•£å°„ç³»æ•°ï¼›å¹¶ä»Žä¼ ç»Ÿæœºå™¨å­¦ä¹ å’Œæ·±åº¦å­¦ä¹ ä¸¤ä¸ªæ–¹é¢æ€»ç»“äº†çŽ°é˜¶æ®µæ°´ç¨»é¥æ„Ÿåˆ¶å›¾çš„ä¸»æµæ–¹æ³•ã€‚ç„¶åŽï¼Œä»Žæœºå™¨å­¦ä¹ æ¨¡åž‹ã€å¤šæºé¥æ„Ÿæ•°æ®èžåˆä»¥åŠé¥æ„Ÿè®¡ç®—äº‘å¹³å°ä¸‰ä¸ªæ–¹é¢å½’çº³äº†æ°´ç¨»é¥æ„Ÿåˆ¶å›¾çš„åº”ç”¨çŽ°çŠ¶ã€‚æ€»ç»“å‘çŽ°ç›®å‰æ°´ç¨»åˆ¶å›¾ç ”ç©¶å­˜åœ¨ä»¥ä¸‹éš¾ç‚¹ï¼šï¼ˆ1)由于相似生长周期植物的存在导致水稻的漏分、错分;(2ï¼‰å ‰å­¦å’Œé›·è¾¾æ•°æ®éƒ½å­˜åœ¨æ—¶åºè§‚æµ‹ä¸è¿žç»­çš„çŽ°è±¡ï¼›ï¼ˆ3ï¼‰åœ°å½¢ç ´ç¢ŽåŒºåŸŸæˆ–å¤šå­£ã€è½®ä½œæ°´ç¨»ç§æ¤åœ°åŒºçš„åˆ¶å›¾å›°éš¾è¾ƒå¤§ï¼›ï¼ˆ4)制图方法的泛化问题。针对这些问题,本文从水稻物候特征发掘、水稻时序观测数据获取手段、水稻遥感制图空间分辨率改进等方面探讨了水稻遥感制图的发展方向:(1)水稻物候期遥感信号特征挖掘;(2)覆盖水稻完整生长期的时序遥感数据获取;(3)水稻遥感制图空间分辨率提升;(4ï¼‰å ‰å­¦å’Œé›·è¾¾æ•°æ®çš„ååŒåº”ç”¨ã€‚","PeriodicalId":38304,"journal":{"name":"Yaogan Xuebao/Journal of Remote Sensing","volume":"50 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135101794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Practical Approach to Improve the MODIS MCD43A Products in Snow-Covered Areas 积雪地区MODIS MCD43A产品改进的实用方法
Pub Date : 2023-01-01 DOI: 10.34133/remotesensing.0057
Anxin Ding, Z. Jiao, Xiaoning Zhang, Yadong Dong, A. Kokhanovsky, Jing Guo, Hailan Jiang
The MODerate Resolution Imaging Spectroradiometer (MODIS) MCD43A products have been extensively applied in the remote sensing field, but recent researchers have demonstrated that these products still had the potential to be further improved by using the latest development of the kernel-driven model [RossThick-LiSparseReciprocal-Snow (RTLSRS)] in snow-covered areas, since the MCD43A product algorithm [RossThick-LiSparseReciprocal (RTLSR)] needed to be improved for the accurate simulation of snow bidirectional reflectance distribution function (BRDF) signatures. In this paper, we proposed a practical approach to improve the MCD43A products, which used the Polarization and Directionality of the Earth's Reflectance (POLDER) observations and random forest algorithm to establish the relationship between the BRDF parameters (MCD43A1) estimated by the RTLSR and RTLSRS models. We applied this relationship to correct the MCD43A1 product and retrieve the corresponding albedo (MCD43A3) and nadir reflectance (MCD43A4). The results obtained highlight several aspects: (a) The proposed approach can perform well in correcting BRDF parameters [root mean square error (RMSE) = ~0.04]. (b) The corrected BRDF parameters were then used to retrieve snow albedo, which matched up quite well with the results of the RTLSRS model. (c) Finally, the snow albedo retrieved by the proposed approach was assessed using ground-based albedo observations. Results indicated that the retrieved snow albedo showed a higher accuracy as compared to the station measurements (RMSE = 0.055, bias = 0.005), which was better than the results of the MODIS albedo product (RMSE = 0.064, bias = −0.018), especially at large angles. These results demonstrated that this proposed approach presented the potential to further improve the MCD43A products in snow-covered areas.
MODerate Resolution Imaging Spectroradiometer(MODIS)MCD43A产品已在遥感领域得到广泛应用,但最近的研究人员已经证明,通过在积雪地区使用最新开发的内核驱动模型[RossThick LiSparse-Reversal Snow(RTLSRS)],这些产品仍有进一步改进的潜力,因为需要改进MCD43A乘积算法[RossThick LiSparseInterversal(RTLSR)]来精确模拟雪双向反射率分布函数(BRDF)特征。在本文中,我们提出了一种改进MCD43A产品的实用方法,该方法使用地球反射的偏振和方向性(POLDER)观测和随机森林算法来建立RTLSR和RTLSRS模型估计的BRDF参数(MCD43A1)之间的关系。我们应用这个关系来校正MCD43A1乘积,并检索相应的反照率(MCD43A3)和最低点反射率(MCD43A4)。所获得的结果突出了几个方面:(a)所提出的方法可以很好地校正BRDF参数[均方根误差(RMSE)=~0.04]。(b)然后使用校正的BRDF参数来检索雪反照率,这与RTLSRS模型的结果非常匹配。(c) 最后,利用地面反照率观测对所提出的方法反演的雪反照率进行了评估。结果表明,与台站测量结果相比,反演的雪反照率显示出更高的精度(RMSE=0.055,偏倚=0.005),这优于MODIS反照率乘积的结果(RMSE=0.064,偏倚=-0.018),尤其是在大角度时。这些结果表明,这种拟议的方法有可能在积雪地区进一步改进MCD43A产品。
{"title":"A Practical Approach to Improve the MODIS MCD43A Products in Snow-Covered Areas","authors":"Anxin Ding, Z. Jiao, Xiaoning Zhang, Yadong Dong, A. Kokhanovsky, Jing Guo, Hailan Jiang","doi":"10.34133/remotesensing.0057","DOIUrl":"https://doi.org/10.34133/remotesensing.0057","url":null,"abstract":"The MODerate Resolution Imaging Spectroradiometer (MODIS) MCD43A products have been extensively applied in the remote sensing field, but recent researchers have demonstrated that these products still had the potential to be further improved by using the latest development of the kernel-driven model [RossThick-LiSparseReciprocal-Snow (RTLSRS)] in snow-covered areas, since the MCD43A product algorithm [RossThick-LiSparseReciprocal (RTLSR)] needed to be improved for the accurate simulation of snow bidirectional reflectance distribution function (BRDF) signatures. In this paper, we proposed a practical approach to improve the MCD43A products, which used the Polarization and Directionality of the Earth's Reflectance (POLDER) observations and random forest algorithm to establish the relationship between the BRDF parameters (MCD43A1) estimated by the RTLSR and RTLSRS models. We applied this relationship to correct the MCD43A1 product and retrieve the corresponding albedo (MCD43A3) and nadir reflectance (MCD43A4). The results obtained highlight several aspects: (a) The proposed approach can perform well in correcting BRDF parameters [root mean square error (RMSE) = ~0.04]. (b) The corrected BRDF parameters were then used to retrieve snow albedo, which matched up quite well with the results of the RTLSRS model. (c) Finally, the snow albedo retrieved by the proposed approach was assessed using ground-based albedo observations. Results indicated that the retrieved snow albedo showed a higher accuracy as compared to the station measurements (RMSE = 0.055, bias = 0.005), which was better than the results of the MODIS albedo product (RMSE = 0.064, bias = −0.018), especially at large angles. These results demonstrated that this proposed approach presented the potential to further improve the MCD43A products in snow-covered areas.","PeriodicalId":38304,"journal":{"name":"Yaogan Xuebao/Journal of Remote Sensing","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44355529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Classifier Mechanism Embedded Feature Extraction Method for Hyperspectral Images 高光谱图像分类器嵌入特征提取方法
Pub Date : 2023-01-01 DOI: 10.11834/jrs.20233065
Changda XING, Meiling WANG, Yongchang XU, Zhisheng WANG
{"title":"Classifier Mechanism Embedded Feature Extraction Method for Hyperspectral Images","authors":"Changda XING, Meiling WANG, Yongchang XU, Zhisheng WANG","doi":"10.11834/jrs.20233065","DOIUrl":"https://doi.org/10.11834/jrs.20233065","url":null,"abstract":"","PeriodicalId":38304,"journal":{"name":"Yaogan Xuebao/Journal of Remote Sensing","volume":"282 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135550130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large-Scale Sub-Canopy Topography Estimation From Tandem-X InSAR and ICESat-2 Data Using Machine Learning Method 基于机器学习方法的Tandem-X InSAR和ICESat-2数据的大尺度冠层地形估算
Pub Date : 2023-01-01 DOI: 10.11834/jrs.20233152
Hu Huacan, Jianjun Zhu, Haiqiang Fu, Juan M. Lopez-Sanchez, Gómez Cristina, Tao Zhang, Kui Liu
{"title":"Large-Scale Sub-Canopy Topography Estimation From Tandem-X InSAR and ICESat-2 Data Using Machine Learning Method","authors":"Hu Huacan, Jianjun Zhu, Haiqiang Fu, Juan M. Lopez-Sanchez, Gómez Cristina, Tao Zhang, Kui Liu","doi":"10.11834/jrs.20233152","DOIUrl":"https://doi.org/10.11834/jrs.20233152","url":null,"abstract":"","PeriodicalId":38304,"journal":{"name":"Yaogan Xuebao/Journal of Remote Sensing","volume":"103 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134981225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Object Units and Transformer Networks Combined Urban Functional Zone Classification Method 对象单元与变网相结合的城市功能区划分方法
Pub Date : 2023-01-01 DOI: 10.11834/jrs.20233036
Weipeng LU, Qingkang He, Jialing LI, Shiyi LI, Chao TAO
{"title":"Object Units and Transformer Networks Combined Urban Functional Zone Classification Method","authors":"Weipeng LU, Qingkang He, Jialing LI, Shiyi LI, Chao TAO","doi":"10.11834/jrs.20233036","DOIUrl":"https://doi.org/10.11834/jrs.20233036","url":null,"abstract":"","PeriodicalId":38304,"journal":{"name":"Yaogan Xuebao/Journal of Remote Sensing","volume":"51 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135102129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of research on land use/cover change and its impact on forest carbon balance 土地利用/覆被变化及其对森林碳平衡的影响研究综述
Pub Date : 2023-01-01 DOI: 10.11834/jrs.20233169
Zihao Huang, Huaqiang Du, Xuejian Li, Fangjie Mao
{"title":"A review of research on land use/cover change and its impact on forest carbon balance","authors":"Zihao Huang, Huaqiang Du, Xuejian Li, Fangjie Mao","doi":"10.11834/jrs.20233169","DOIUrl":"https://doi.org/10.11834/jrs.20233169","url":null,"abstract":"","PeriodicalId":38304,"journal":{"name":"Yaogan Xuebao/Journal of Remote Sensing","volume":"320 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135357592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Edge-perception Enhanced Segmentation Method for High-resolution Remote Sensing Image 高分辨率遥感图像边缘感知增强分割方法
Pub Date : 2023-01-01 DOI: 10.11834/jrs.20233098
Chunyan YU, Donglin LI, Meiping SONG, Haoyang YU, Chein-I Chang
{"title":"Edge-perception Enhanced Segmentation Method for High-resolution Remote Sensing Image","authors":"Chunyan YU, Donglin LI, Meiping SONG, Haoyang YU, Chein-I Chang","doi":"10.11834/jrs.20233098","DOIUrl":"https://doi.org/10.11834/jrs.20233098","url":null,"abstract":"","PeriodicalId":38304,"journal":{"name":"Yaogan Xuebao/Journal of Remote Sensing","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135758452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mapping forest type and tree species fractions of China’s cold-temperate forest based on synthetically mixed data and random forest regression 基于综合混合数据和随机森林回归的中国寒温带森林类型和树种组分制图
Pub Date : 2023-01-01 DOI: 10.11834/jrs.20233103
Mengyu Wang, Feng Zhao, Yong Pang, Ran Meng, Wen Jia, Chao Yue
å¯’æ¸©å¸¦æ£®æž—æ˜¯é™†åœ°ä¸Šåˆ†å¸ƒé¢ç§¯æœ€å¹¿çš„æ£®æž—ç”Ÿæ€ç³»ç»Ÿï¼Œå ·æœ‰é‡è¦çš„ç”Ÿæ€å’Œç¤¾ä¼šç»æµŽä»·å€¼ã€‚å®šé‡åˆ»ç”»é•¿æ—¶åºå¯’æ¸©å¸¦æ£®æž—ç±»åž‹å’Œæ ‘ç§è¦†ç›–ä¿¡æ¯å¯¹äºŽé‡åŒ–å ¶ç”Ÿæ€ç³»ç»ŸæœåŠ¡åŠŸèƒ½ä»¥åŠåˆ¶å®šæ£®æž—ç®¡ç†æ”¿ç­–å ·æœ‰é‡è¦æ„ä¹‰ã€‚ç„¶è€Œå—å®žæµ‹è¦†ç›–åº¦æ•°æ®ç¼ºä¹å’Œå¤šå ‰è°±å½±åƒå ‰è°±ä¿¡æ¯æœ‰é™çš„é™åˆ¶ï¼ŒçŽ°æœ‰ç ”ç©¶è¾ƒå°‘æŽ¢è®¨ä¸­åˆ†è¾¨çŽ‡å¤šå ‰è°±æ˜Ÿè½½æ•°æ®ï¼ˆå¦‚Landsatå«æ˜Ÿï¼‰å¯¹ä¸­å›½å¯’æ¸©å¸¦æ£®æž—ç±»åž‹è¦†ç›–åº¦å’Œæ ‘ç§è¦†ç›–åº¦è¿›è¡Œé•¿æ—¶åºåæ¼”çš„å¯è¡Œæ€§ï¼Œå¹¶ä¸”å¯¹äºŽé¥æ„Ÿå½±åƒèŽ·å–æ—¶é—´é¢‘çŽ‡ï¼ˆå•æ—¶ç›¸ã€å¤šæ—¶ç›¸ï¼‰å¯¹åæ¼”ç²¾åº¦çš„å½±å“ä»ç¼ºä¹å®šé‡è¯„ä¼°ã€‚ä¸ºæ­¤ï¼Œæœ¬æ–‡åˆ©ç”¨äººå·¥åˆæˆæ ·æœ¬å’Œéšæœºæ£®æž—å›žå½’æ¨¡åž‹å¯¹é»‘é¾™æ±Ÿçœå­Ÿå®¶å²—æž—åœºçš„æ£®æž—ç±»åž‹å’Œæ ‘ç§è¦†ç›–åº¦åˆ†åˆ«è¿›è¡Œäº†åæ¼”ã€‚å¹¶å°†æ¨¡åž‹åº”ç”¨è‡³1986-2020年的Landsat影像,得到孟家岗林场阔叶林和针叶林35年的覆盖度结果。结果表明:(1)对于森林类型覆盖度反演,基于生长季Landsat波段和植被指数(归一化耕作指数以及缨帽变换系数)的中值特征估算的精度最高,阔叶林覆盖度估算R¯2= 0.76,针叶林覆盖度估算R¯2= 0.71;(2ï¼‰å¯¹äºŽæ ‘ç§è¦†ç›–åº¦åæ¼”ï¼ŒåŸºäºŽå¤šæ—¶ç›¸Landsat波段和植被指数的精度最高,落叶松覆盖度估算R¯2
我是一名学生,我想在这里和大家分享一下我的学习经验,希望对大家有所帮助。炖汤:炖汤的时候要注意炖煮的时间,炖煮的时候要注意炖煮的温度,炖煮的时候要注意炖煮的时间,炖煮的时间要注意炖煮的时间,炖煮的时间要注意炖煮的时间,炖煮的时间要注意炖煮的时间,炖煮的时间要注意炖煮的时间,炖煮的时间要注意炖煮的时间,炖煮的时间要注意炖煮的时间,炖煮的时间要注意炖煮的时间,炖煮的时间要注意炖煮的时间,炖煮的时间要注意炖煮的时间,炖煮的时间要注意炖煮的时间,炖煮的时间要注意炖煮的时间,炖煮的时间要注意炖煮的时间,炖煮的时间要注意炖煮的时间。Landsat2020ソçLandsatå½±±åï¼å¾åå®å®¶å²æå°å°å°åºéå¶æåéå¶æ35ãƒãƒãƒãƒãƒãƒãƒç度ç"æãç"æ表æ表æï¼1ï¼å¯¹äºæ£®æç±"åè¦ç度åææ¼ï¼åºäºçé¿å£Landsat¢æ®µåæ¤è¢"ææ°ï¼½å½ä¸åèä½ææ°ä"¥å缨帽åæ¢ç³"æ°ï¼çä¸çå¼ç¹å¾ä¼°ç®çç精度æé"ï¼éå¶ä¸ç度估ç®R¯2=0.03:0.04:0.07:2= 0.炖煮炖煮炖煮炖煮炖煮炖煮炖煮炖煮炖煮炖煮炖煮炖煮炖煮炖煮炖煮炖煮炖煮炖煮炖煮炖煮炖煮炖煮炖煮炖煮炖煮炖煮炖煮炖煮炖煮
{"title":"Mapping forest type and tree species fractions of China’s cold-temperate forest based on synthetically mixed data and random forest regression","authors":"Mengyu Wang, Feng Zhao, Yong Pang, Ran Meng, Wen Jia, Chao Yue","doi":"10.11834/jrs.20233103","DOIUrl":"https://doi.org/10.11834/jrs.20233103","url":null,"abstract":"å¯’æ¸©å¸¦æ£®æž—æ˜¯é™†åœ°ä¸Šåˆ†å¸ƒé¢ç§¯æœ€å¹¿çš„æ£®æž—ç”Ÿæ€ç³»ç»Ÿï¼Œå ·æœ‰é‡è¦çš„ç”Ÿæ€å’Œç¤¾ä¼šç»æµŽä»·å€¼ã€‚å®šé‡åˆ»ç”»é•¿æ—¶åºå¯’æ¸©å¸¦æ£®æž—ç±»åž‹å’Œæ ‘ç§è¦†ç›–ä¿¡æ¯å¯¹äºŽé‡åŒ–å ¶ç”Ÿæ€ç³»ç»ŸæœåŠ¡åŠŸèƒ½ä»¥åŠåˆ¶å®šæ£®æž—ç®¡ç†æ”¿ç­–å ·æœ‰é‡è¦æ„ä¹‰ã€‚ç„¶è€Œå—å®žæµ‹è¦†ç›–åº¦æ•°æ®ç¼ºä¹å’Œå¤šå ‰è°±å½±åƒå ‰è°±ä¿¡æ¯æœ‰é™çš„é™åˆ¶ï¼ŒçŽ°æœ‰ç ”ç©¶è¾ƒå°‘æŽ¢è®¨ä¸­åˆ†è¾¨çŽ‡å¤šå ‰è°±æ˜Ÿè½½æ•°æ®ï¼ˆå¦‚Landsatå«æ˜Ÿï¼‰å¯¹ä¸­å›½å¯’æ¸©å¸¦æ£®æž—ç±»åž‹è¦†ç›–åº¦å’Œæ ‘ç§è¦†ç›–åº¦è¿›è¡Œé•¿æ—¶åºåæ¼”çš„å¯è¡Œæ€§ï¼Œå¹¶ä¸”å¯¹äºŽé¥æ„Ÿå½±åƒèŽ·å–æ—¶é—´é¢‘çŽ‡ï¼ˆå•æ—¶ç›¸ã€å¤šæ—¶ç›¸ï¼‰å¯¹åæ¼”ç²¾åº¦çš„å½±å“ä»ç¼ºä¹å®šé‡è¯„ä¼°ã€‚ä¸ºæ­¤ï¼Œæœ¬æ–‡åˆ©ç”¨äººå·¥åˆæˆæ ·æœ¬å’Œéšæœºæ£®æž—å›žå½’æ¨¡åž‹å¯¹é»‘é¾™æ±Ÿçœå­Ÿå®¶å²—æž—åœºçš„æ£®æž—ç±»åž‹å’Œæ ‘ç§è¦†ç›–åº¦åˆ†åˆ«è¿›è¡Œäº†åæ¼”ã€‚å¹¶å°†æ¨¡åž‹åº”ç”¨è‡³1986-2020年的Landsat影像,得到孟家岗林场阔叶林和针叶林35年的覆盖度结果。结果表明:(1)对于森林类型覆盖度反演,基于生长季Landsat波段和植被指数(归一化耕作指数以及缨帽变换系数)的中值特征估算的精度最高,阔叶林覆盖度估算<inline-formula><alternatives><math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\"><msup><mrow><mover accent=\"true\"><mi>R</mi><mo>¯</mo></mover></mrow><mrow><mn mathvariant=\"normal\">2</mn></mrow></msup></math><graphic specific-use=\"big\" xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"alternativeImage/C83538AF-3C7B-4d5a-81B1-8BD2456A949D-M001.jpg\"><?fx-imagestate width=\"2.96333337\" height=\"2.96333337\"?></graphic><graphic specific-use=\"small\" xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"alternativeImage/C83538AF-3C7B-4d5a-81B1-8BD2456A949D-M001c.jpg\"><?fx-imagestate width=\"2.96333337\" height=\"2.96333337\"?></graphic></alternatives></inline-formula>= 0.76,针叶林覆盖度估算<inline-formula><alternatives><math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\"><msup><mrow><mover accent=\"true\"><mi>R</mi><mo>¯</mo></mover></mrow><mrow><mn mathvariant=\"normal\">2</mn></mrow></msup></math><graphic specific-use=\"big\" xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"alternativeImage/C83538AF-3C7B-4d5a-81B1-8BD2456A949D-M001.jpg\"><?fx-imagestate width=\"2.96333337\" height=\"2.96333337\"?></graphic><graphic specific-use=\"small\" xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"alternativeImage/C83538AF-3C7B-4d5a-81B1-8BD2456A949D-M001c.jpg\"><?fx-imagestate width=\"2.96333337\" height=\"2.96333337\"?></graphic></alternatives></inline-formula>= 0.71;(2ï¼‰å¯¹äºŽæ ‘ç§è¦†ç›–åº¦åæ¼”ï¼ŒåŸºäºŽå¤šæ—¶ç›¸Landsat波段和植被指数的精度最高,落叶松覆盖度估算<inline-formula><alternatives><math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\"><msup><mrow><mover accent=\"true\"><mi>R</mi><mo>¯</mo></mover></mrow><mrow><mn mathvariant=\"normal\">2</mn></mrow></msup></math><graphic specific-use=\"big\" xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"alternativeImage/C83538AF-3C7B-4d5a-81B1-8BD2456A","PeriodicalId":38304,"journal":{"name":"Yaogan Xuebao/Journal of Remote Sensing","volume":"188 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135501948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
遥感学报
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1