首页 > 最新文献

International Journal of Intelligent Systems Technologies and Applications最新文献

英文 中文
Automated poetry scoring using BERT with multi-scale poetry representation 使用BERT与多尺度诗歌表示自动诗歌评分
Q3 Computer Science Pub Date : 2023-01-01 DOI: 10.1504/ijista.2023.133694
Mingzhi Gao, Selin Ahipasaoglu, Kristin Schuster
Automated poetry scoring is an emerging task in automated text scoring, which is receiving increasing attention in AI for education. Poetry is distinct from other text in its complexity and specialty in language feature moreover, poems are usually rated from multiple criteria besides the overall impression. However, few existing methods to the best of our knowledge have considered a tailored text representation model for encoding poetry. Moreover, the lack of large poetry corpus and extensive labelled data is another major constraint to construct an effective poetry scoring model. To address such problems, we proposed BERT-based models with multi-scale poetry representation. In addition, we employ multiple losses and R-Drop strategy to align the distribution of manual and model scoring and mitigate the tendency of consistent score in poems. Experiment results demonstrate that our model with multi-scale poetry representation stands out when comparing with single-scale representation model.
诗歌自动评分是文本自动评分中的一项新兴任务,在教育人工智能领域受到越来越多的关注。诗歌具有不同于其他文本的复杂性和语言特征的特殊性,而且除了整体印象之外,诗歌通常还会从多个标准进行评价。然而,据我们所知,很少有现有的方法考虑到为诗歌编码定制文本表示模型。此外,缺乏大型诗歌语料库和广泛的标记数据是构建有效诗歌评分模型的另一个主要制约因素。为了解决这些问题,我们提出了基于bert的多尺度诗歌表达模型。此外,我们采用多重损失和R-Drop策略来调整人工和模型评分的分布,减轻诗歌中一致评分的趋势。实验结果表明,与单尺度诗歌表征模型相比,我们的多尺度诗歌表征模型更加突出。
{"title":"Automated poetry scoring using BERT with multi-scale poetry representation","authors":"Mingzhi Gao, Selin Ahipasaoglu, Kristin Schuster","doi":"10.1504/ijista.2023.133694","DOIUrl":"https://doi.org/10.1504/ijista.2023.133694","url":null,"abstract":"Automated poetry scoring is an emerging task in automated text scoring, which is receiving increasing attention in AI for education. Poetry is distinct from other text in its complexity and specialty in language feature moreover, poems are usually rated from multiple criteria besides the overall impression. However, few existing methods to the best of our knowledge have considered a tailored text representation model for encoding poetry. Moreover, the lack of large poetry corpus and extensive labelled data is another major constraint to construct an effective poetry scoring model. To address such problems, we proposed BERT-based models with multi-scale poetry representation. In addition, we employ multiple losses and R-Drop strategy to align the distribution of manual and model scoring and mitigate the tendency of consistent score in poems. Experiment results demonstrate that our model with multi-scale poetry representation stands out when comparing with single-scale representation model.","PeriodicalId":38712,"journal":{"name":"International Journal of Intelligent Systems Technologies and Applications","volume":"115 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135844973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Survey of Road Anomalies Detection Methods 道路异常检测方法综述
Q3 Computer Science Pub Date : 2023-01-01 DOI: 10.1504/ijista.2023.10058063
Derar Elyyan, Yousef-Awwad Daraghmi, Faisal Khamayseh, R. Saffarini, Muath N Sabha
{"title":"Survey of Road Anomalies Detection Methods","authors":"Derar Elyyan, Yousef-Awwad Daraghmi, Faisal Khamayseh, R. Saffarini, Muath N Sabha","doi":"10.1504/ijista.2023.10058063","DOIUrl":"https://doi.org/10.1504/ijista.2023.10058063","url":null,"abstract":"","PeriodicalId":38712,"journal":{"name":"International Journal of Intelligent Systems Technologies and Applications","volume":"1 1","pages":"280-302"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67209236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Classification of cervical cancer from Pap smear images: a convolutional neural network approach 从子宫颈抹片图像中分类宫颈癌:卷积神经网络方法
Q3 Computer Science Pub Date : 2023-01-01 DOI: 10.1504/ijista.2023.133702
Siti Noraini Sulaiman, Ajmal Hadi Ahmad Hishamuddin, Iza Sazanita Isa, Muhammad Khusairi Osman, Zainal Hisham Che Soh
Cervical cancer is a significant global issue, with Pap smear tests being a common screening tool for precancerous stages. This study aims to develop a computer-aided diagnostics system that can classify precancerous cells from Pap smear images. The project employs convolutional neural networks (CNNs) trained using pre-processed images, adaptive fuzzy K-means (AFKM), and fuzzy C-means (FCM) to classify cervical cancer cell data as normal or abnormal. The datasets used in the project include normal, low-grade squamous intraepithelial lesion (LSIL), and high-grade squamous intraepithelial lesion (HSIL) categories. CNN1, CNN2, and CNN3 have been developed and CNN2 was chosen due to its highest accuracy of 87.71%. The CNN2 trained with AFKM outperformed other networks with an accuracy of 89.53%, precision of 0.870, recall of 0.870, specificity of 0.935, and F1-score of 0.870. This study demonstrates the potential of deep learning-based approaches for identifying and classifying cervical cell pre-cancerous stages.
宫颈癌是一个重大的全球性问题,巴氏涂片检查是癌前阶段的常见筛查工具。本研究旨在开发一种计算机辅助诊断系统,可以从巴氏涂片图像中分类癌前细胞。该项目采用预处理图像、自适应模糊k均值(AFKM)和模糊c均值(FCM)训练的卷积神经网络(cnn)对宫颈癌细胞数据进行正常或异常分类。项目中使用的数据集包括正常、低级别鳞状上皮内病变(LSIL)和高级别鳞状上皮内病变(HSIL)类别。先后开发了CNN1、CNN2、CNN3,最终选择了准确率最高的CNN2,达到87.71%。使用AFKM训练的CNN2网络的准确率为89.53%,精密度为0.870,召回率为0.870,特异性为0.935,f1评分为0.870,优于其他网络。这项研究证明了基于深度学习的方法在识别和分类宫颈细胞癌前阶段方面的潜力。
{"title":"Classification of cervical cancer from Pap smear images: a convolutional neural network approach","authors":"Siti Noraini Sulaiman, Ajmal Hadi Ahmad Hishamuddin, Iza Sazanita Isa, Muhammad Khusairi Osman, Zainal Hisham Che Soh","doi":"10.1504/ijista.2023.133702","DOIUrl":"https://doi.org/10.1504/ijista.2023.133702","url":null,"abstract":"Cervical cancer is a significant global issue, with Pap smear tests being a common screening tool for precancerous stages. This study aims to develop a computer-aided diagnostics system that can classify precancerous cells from Pap smear images. The project employs convolutional neural networks (CNNs) trained using pre-processed images, adaptive fuzzy K-means (AFKM), and fuzzy C-means (FCM) to classify cervical cancer cell data as normal or abnormal. The datasets used in the project include normal, low-grade squamous intraepithelial lesion (LSIL), and high-grade squamous intraepithelial lesion (HSIL) categories. CNN1, CNN2, and CNN3 have been developed and CNN2 was chosen due to its highest accuracy of 87.71%. The CNN2 trained with AFKM outperformed other networks with an accuracy of 89.53%, precision of 0.870, recall of 0.870, specificity of 0.935, and F1-score of 0.870. This study demonstrates the potential of deep learning-based approaches for identifying and classifying cervical cell pre-cancerous stages.","PeriodicalId":38712,"journal":{"name":"International Journal of Intelligent Systems Technologies and Applications","volume":"286 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135844992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel approach for intelligent introduction of optimal system error in spatial carrier technology 空间载波技术中最优系统误差智能引入的新方法
Q3 Computer Science Pub Date : 2023-01-01 DOI: 10.1504/ijista.2023.10059172
Zhisong Li, Zhiping Fan, Jiaxing Sun
{"title":"A novel approach for intelligent introduction of optimal system error in spatial carrier technology","authors":"Zhisong Li, Zhiping Fan, Jiaxing Sun","doi":"10.1504/ijista.2023.10059172","DOIUrl":"https://doi.org/10.1504/ijista.2023.10059172","url":null,"abstract":"","PeriodicalId":38712,"journal":{"name":"International Journal of Intelligent Systems Technologies and Applications","volume":"59 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135496957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automated Poetry Scoring Using BERT with Multi-Scale Poetry Representation 使用BERT与多尺度诗歌表示的自动诗歌评分
Q3 Computer Science Pub Date : 2023-01-01 DOI: 10.1504/ijista.2023.10056521
Kristin Schuster, Selin Ahipasaoglu, Mingzhi Gao
{"title":"Automated Poetry Scoring Using BERT with Multi-Scale Poetry Representation","authors":"Kristin Schuster, Selin Ahipasaoglu, Mingzhi Gao","doi":"10.1504/ijista.2023.10056521","DOIUrl":"https://doi.org/10.1504/ijista.2023.10056521","url":null,"abstract":"","PeriodicalId":38712,"journal":{"name":"International Journal of Intelligent Systems Technologies and Applications","volume":"1 1","pages":"250-261"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67209266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sentiment analysis using RNN model with LSTM 基于LSTM的RNN模型情感分析
Q3 Computer Science Pub Date : 2023-01-01 DOI: 10.1504/ijista.2023.133701
Liang Zhou, Arpit Kumar Sharma, Kishan Kanhaiya, Amita Nandal, Arvind Dhaka
In today's digital world with a rapid increase in e-commerce portals, the consumers are more oriented towards seeking out online reviews, feedback, or ratings over a product during the online buying process. In this research work, we tried to investigate the relationship between the review ratings and the sentiment of reviews in the form of their polarity. We have tried to predict the sentiments over the given reviews by implementing various machine learning techniques, i.e., logistic regression, support vector machine (SVM), k-nearest neighbours (KNN), and recurrent neural network (RNN). The machine learning techniques predict the sentiments of provided reviews in two scenarios, i.e., scenario 1 - negative (-) and positive (+) and scenario 2 - negative (-), neutral (0) and positive (+). In this paper, we have proposed the architecture for predicting the sentiments with better accuracy over other techniques.
在电子商务门户快速增长的今天,消费者更倾向于在网上购买过程中寻求对产品的在线评论、反馈或评级。在这项研究工作中,我们试图以极性的形式来探讨评论评分与评论情绪之间的关系。我们试图通过实现各种机器学习技术来预测给定评论的情绪,即逻辑回归、支持向量机(SVM)、k近邻(KNN)和循环神经网络(RNN)。机器学习技术预测了两种场景下提供的评论的情绪,即场景1 -消极(-)和积极(+),场景2 -消极(-),中性(0)和积极(+)。在本文中,我们提出了一种比其他技术更准确的预测情感的体系结构。
{"title":"Sentiment analysis using RNN model with LSTM","authors":"Liang Zhou, Arpit Kumar Sharma, Kishan Kanhaiya, Amita Nandal, Arvind Dhaka","doi":"10.1504/ijista.2023.133701","DOIUrl":"https://doi.org/10.1504/ijista.2023.133701","url":null,"abstract":"In today's digital world with a rapid increase in e-commerce portals, the consumers are more oriented towards seeking out online reviews, feedback, or ratings over a product during the online buying process. In this research work, we tried to investigate the relationship between the review ratings and the sentiment of reviews in the form of their polarity. We have tried to predict the sentiments over the given reviews by implementing various machine learning techniques, i.e., logistic regression, support vector machine (SVM), k-nearest neighbours (KNN), and recurrent neural network (RNN). The machine learning techniques predict the sentiments of provided reviews in two scenarios, i.e., scenario 1 - negative (-) and positive (+) and scenario 2 - negative (-), neutral (0) and positive (+). In this paper, we have proposed the architecture for predicting the sentiments with better accuracy over other techniques.","PeriodicalId":38712,"journal":{"name":"International Journal of Intelligent Systems Technologies and Applications","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135844731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sentiment Analysis using RNN Model with LSTM 基于LSTM的RNN模型情感分析
Q3 Computer Science Pub Date : 2023-01-01 DOI: 10.1504/ijista.2023.10058066
Arvind Dhaka, Amita Nandal, K.S.S. Kanhaiya, A. Sharma, Liang Zhou
{"title":"Sentiment Analysis using RNN Model with LSTM","authors":"Arvind Dhaka, Amita Nandal, K.S.S. Kanhaiya, A. Sharma, Liang Zhou","doi":"10.1504/ijista.2023.10058066","DOIUrl":"https://doi.org/10.1504/ijista.2023.10058066","url":null,"abstract":"","PeriodicalId":38712,"journal":{"name":"International Journal of Intelligent Systems Technologies and Applications","volume":"1 1","pages":"229-249"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67209305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heterogeneous Graph Convolutional Neural Network for Short Text Classification 基于异构图卷积神经网络的短文本分类
Q3 Computer Science Pub Date : 2023-01-01 DOI: 10.1504/ijista.2023.10058137
Lv Lei, Zhijun Fang, Peipei Li, Bo Huang, Chenming Wang
{"title":"Heterogeneous Graph Convolutional Neural Network for Short Text Classification","authors":"Lv Lei, Zhijun Fang, Peipei Li, Bo Huang, Chenming Wang","doi":"10.1504/ijista.2023.10058137","DOIUrl":"https://doi.org/10.1504/ijista.2023.10058137","url":null,"abstract":"","PeriodicalId":38712,"journal":{"name":"International Journal of Intelligent Systems Technologies and Applications","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67209626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel edge detection filter based on fractional order Legendre-Laguerre functions 一种基于分数阶legende - laguerre函数的边缘检测滤波器
Q3 Computer Science Pub Date : 2023-01-01 DOI: 10.1504/ijista.2023.10057286
M. SayedElahl
{"title":"A novel edge detection filter based on fractional order Legendre-Laguerre functions","authors":"M. SayedElahl","doi":"10.1504/ijista.2023.10057286","DOIUrl":"https://doi.org/10.1504/ijista.2023.10057286","url":null,"abstract":"","PeriodicalId":38712,"journal":{"name":"International Journal of Intelligent Systems Technologies and Applications","volume":"1 1","pages":"321-343"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67209617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Knowledge-based Genetic Algorithm (KBGA) approach to optimize to Gated Recurrent Unit for Semantic Web Service Classification 基于知识的遗传算法(KBGA)优化语义Web服务分类的门控循环单元
Q3 Computer Science Pub Date : 2023-01-01 DOI: 10.1504/ijista.2023.10059590
B.Vinoth Kumar, Sridevi S, Karpagam G. R
{"title":"Knowledge-based Genetic Algorithm (KBGA) approach to optimize to Gated Recurrent Unit for Semantic Web Service Classification","authors":"B.Vinoth Kumar, Sridevi S, Karpagam G. R","doi":"10.1504/ijista.2023.10059590","DOIUrl":"https://doi.org/10.1504/ijista.2023.10059590","url":null,"abstract":"","PeriodicalId":38712,"journal":{"name":"International Journal of Intelligent Systems Technologies and Applications","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135955966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Intelligent Systems Technologies and Applications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1