Pub Date : 2022-07-01DOI: 10.5005/jp-journals-10009-1929
E. Dosedla, Z. Ballová, P. Calda
{"title":"Prenatal Diagnosis of Milroy's Syndrome","authors":"E. Dosedla, Z. Ballová, P. Calda","doi":"10.5005/jp-journals-10009-1929","DOIUrl":"https://doi.org/10.5005/jp-journals-10009-1929","url":null,"abstract":"","PeriodicalId":38810,"journal":{"name":"Donald School Journal of Ultrasound in Obstetrics and Gynecology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42575716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-22DOI: 10.5005/jp-journals-10009-1917
A. Kurjak, Edin Medjedović, Alma Suljević, Sabaheta Jonuzović-Prošić
{"title":"Recent Advances in the Assessment of Fetal Behavior in Preeclamptic Patients","authors":"A. Kurjak, Edin Medjedović, Alma Suljević, Sabaheta Jonuzović-Prošić","doi":"10.5005/jp-journals-10009-1917","DOIUrl":"https://doi.org/10.5005/jp-journals-10009-1917","url":null,"abstract":"","PeriodicalId":38810,"journal":{"name":"Donald School Journal of Ultrasound in Obstetrics and Gynecology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42222038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-22DOI: 10.5005/jp-journals-10009-1921
R. Pooh, M. Machida, N. Matsuzawa
As the brain is an organ that must be understood as a three-dimensional (3D) structure, and because the fetal skull ossifies in late pregnancy, it is difficult to depict detailed structures in the brain using conventional horizontal cross-sectional images captured by transabdominal ultrasound. However, there are large spaces such as anterior/posterior fontanels and sagittal sutures in the fetal skull. By using these spaces as a window for ultrasound, it becomes easier to observe the brain structure. Transvaginal fetal 3D neurosonography and transvaginal ultrasound have made it possible to observe congenital brain structural abnormalities and cortical dysgenesis in more detail. Transvaginal 3D ultrasound imaging has been reported to be effective in the evaluation of fetal brain structure. Images of normal brain development, intracerebral vascular architecture, brain malformations, brain disorders such as intracerebral hemorrhage and stroke, and abnormalities in cortical development have gradually revealed the previously unknown development and pathology of the fetal brain. Fetal 3D neurosonography provides information on the orientation of the fetal brain, brain development during pregnancy, the exact location of brain lesions, and the inner structure of the lesions. Detailed neuroimaging is now available for diagnosis of the central nervous system, and genetic tests such as chromosomal microarrays, exome sequencing, and genome sequencing add information on genetic causative factors. The combination of detailed neurosonography and molecular genetics has established a new interdisciplinary field of fetal neurology called “neurosonogenetics,” which will enable accurate perinatal management and care in the future.
{"title":"Fetal Brain Structure and CNS Anomalies","authors":"R. Pooh, M. Machida, N. Matsuzawa","doi":"10.5005/jp-journals-10009-1921","DOIUrl":"https://doi.org/10.5005/jp-journals-10009-1921","url":null,"abstract":"As the brain is an organ that must be understood as a three-dimensional (3D) structure, and because the fetal skull ossifies in late pregnancy, it is difficult to depict detailed structures in the brain using conventional horizontal cross-sectional images captured by transabdominal ultrasound. However, there are large spaces such as anterior/posterior fontanels and sagittal sutures in the fetal skull. By using these spaces as a window for ultrasound, it becomes easier to observe the brain structure. Transvaginal fetal 3D neurosonography and transvaginal ultrasound have made it possible to observe congenital brain structural abnormalities and cortical dysgenesis in more detail. Transvaginal 3D ultrasound imaging has been reported to be effective in the evaluation of fetal brain structure. Images of normal brain development, intracerebral vascular architecture, brain malformations, brain disorders such as intracerebral hemorrhage and stroke, and abnormalities in cortical development have gradually revealed the previously unknown development and pathology of the fetal brain. Fetal 3D neurosonography provides information on the orientation of the fetal brain, brain development during pregnancy, the exact location of brain lesions, and the inner structure of the lesions. Detailed neuroimaging is now available for diagnosis of the central nervous system, and genetic tests such as chromosomal microarrays, exome sequencing, and genome sequencing add information on genetic causative factors. The combination of detailed neurosonography and molecular genetics has established a new interdisciplinary field of fetal neurology called “neurosonogenetics,” which will enable accurate perinatal management and care in the future.","PeriodicalId":38810,"journal":{"name":"Donald School Journal of Ultrasound in Obstetrics and Gynecology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43720715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-22DOI: 10.5005/jp-journals-10009-1912
Edin Medjedović, E. Begić, N. Begić, Sabaheta Jonuzović-Prošić, Amela Muftić, Jasminka Kurtalic
{"title":"Ultrasound-guided Neuraxial Analgesia in Obstetrics","authors":"Edin Medjedović, E. Begić, N. Begić, Sabaheta Jonuzović-Prošić, Amela Muftić, Jasminka Kurtalic","doi":"10.5005/jp-journals-10009-1912","DOIUrl":"https://doi.org/10.5005/jp-journals-10009-1912","url":null,"abstract":"","PeriodicalId":38810,"journal":{"name":"Donald School Journal of Ultrasound in Obstetrics and Gynecology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48683256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-22DOI: 10.5005/jp-journals-10009-1918
K. Kanenishi, T. Miyake, Riko Takayoshi, Toshiyuki Hata
We present our experience of HDlive silhouette features of a fetal multicystic dysplastic kidney (MCDK) at 31 weeks and 1 day of gestation. Two-dimensional sonography revealed a left MCDK larger than the right normal kidney. HDlive silhouette showed multiple cysts of various sizes in the left big kidney on the left side of the spine. HDlive Flow with HDlive silhouette clearly demonstrated spatial relationships between bilateral kidneys and intra-abdominal vasculatures. HDlive silhouette may provide information on assessing the spatial recognition of fetal MCDK.
{"title":"HDlive Silhouette Features of Multicystic Dysplastic Kidney","authors":"K. Kanenishi, T. Miyake, Riko Takayoshi, Toshiyuki Hata","doi":"10.5005/jp-journals-10009-1918","DOIUrl":"https://doi.org/10.5005/jp-journals-10009-1918","url":null,"abstract":"We present our experience of HDlive silhouette features of a fetal multicystic dysplastic kidney (MCDK) at 31 weeks and 1 day of gestation. Two-dimensional sonography revealed a left MCDK larger than the right normal kidney. HDlive silhouette showed multiple cysts of various sizes in the left big kidney on the left side of the spine. HDlive Flow with HDlive silhouette clearly demonstrated spatial relationships between bilateral kidneys and intra-abdominal vasculatures. HDlive silhouette may provide information on assessing the spatial recognition of fetal MCDK.","PeriodicalId":38810,"journal":{"name":"Donald School Journal of Ultrasound in Obstetrics and Gynecology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43575992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-22DOI: 10.5005/jp-journals-10009-1913
G. Monni, A. Iuculano, C. Peddes
{"title":"Guidelines for Invasive Prenatal Procedures","authors":"G. Monni, A. Iuculano, C. Peddes","doi":"10.5005/jp-journals-10009-1913","DOIUrl":"https://doi.org/10.5005/jp-journals-10009-1913","url":null,"abstract":"","PeriodicalId":38810,"journal":{"name":"Donald School Journal of Ultrasound in Obstetrics and Gynecology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44835001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-22DOI: 10.5005/jp-journals-10009-1916
A. Khurana
{"title":"Recent Advances in 3D Assessment of Mullerian Anomalies","authors":"A. Khurana","doi":"10.5005/jp-journals-10009-1916","DOIUrl":"https://doi.org/10.5005/jp-journals-10009-1916","url":null,"abstract":"","PeriodicalId":38810,"journal":{"name":"Donald School Journal of Ultrasound in Obstetrics and Gynecology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43333835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-22DOI: 10.5005/jp-journals-10009-1920
Elitza Markova-Car, K. Pavelić
Preimplantation genetic diagnosis (PGD) or preimplantation genetic screening (PGS) is an early form of prenatal diagnosis which allows that, before the pregnancy has begun, embryos can be tested for genetic disorders. 1 The rationale behind the method lies in the removal of cells from early embryos and genetic analysis of these cells before being transferred to the uterus. This procedure offers an advantage for those couples having genetic disorders whose offspring has an increased risk of a specific genetic condition by helping in the delivery of a healthy baby or prevention of repeated spontaneous abortions. 2 As a result, PGS has developed as a valuable tool for enhancing pregnancy success with assisted reproductive technologies. 3 In fact, PGD may possibly be suggested for any disorder for which molecular testing can be performed.
{"title":"Preimplantation Genetic Diagnosis","authors":"Elitza Markova-Car, K. Pavelić","doi":"10.5005/jp-journals-10009-1920","DOIUrl":"https://doi.org/10.5005/jp-journals-10009-1920","url":null,"abstract":"Preimplantation genetic diagnosis (PGD) or preimplantation genetic screening (PGS) is an early form of prenatal diagnosis which allows that, before the pregnancy has begun, embryos can be tested for genetic disorders. 1 The rationale behind the method lies in the removal of cells from early embryos and genetic analysis of these cells before being transferred to the uterus. This procedure offers an advantage for those couples having genetic disorders whose offspring has an increased risk of a specific genetic condition by helping in the delivery of a healthy baby or prevention of repeated spontaneous abortions. 2 As a result, PGS has developed as a valuable tool for enhancing pregnancy success with assisted reproductive technologies. 3 In fact, PGD may possibly be suggested for any disorder for which molecular testing can be performed.","PeriodicalId":38810,"journal":{"name":"Donald School Journal of Ultrasound in Obstetrics and Gynecology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43917693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-22DOI: 10.5005/jp-journals-10009-1915
Toshiyuki Hata, T. Miyake, Riko Takayoshi, Aya Koyanagi, Tomomi Yamanishi, Saori Bouno, Tomomi Kawahara, Miyuki Konishi
Objective: To demonstrate spatial fetal organ and placental microvasculature using three-dimensional (3D) Slow flow HD. Methods: Seventy normal pregnancies at 11−39 weeks of gestation were studied to demonstrate spatial fetal organ (brain, lung, liver, spleen, adrenal gland, and kidney) and placental microvasculature using 3D Slow flow HD with a new transabdominal mechanical matrix probe. Results: In the first trimester of pregnancy, the whole-body vascularity of the fetus could be clearly depicted. Fetal intracranial vascularity including brain arteries and the venous system could be clearly identified. Characteristic spatial microvasculature of the fetal lung, liver, spleen, adrenal gland, and kidney could be clearly recognized. The microvasculature density of each organ increased with advancing gestation. Spatial relationships among fetal organs were also noted. The increased density of the placental microvasculature with advancing gestation was evident. Conclusion: 3D Slow flow HD can clearly demonstrate spatial fetal organ and placental microvasculature. This modality may provide novel information on normal and abnormal developments of fetal organs and the placenta in clinical practice and future research.
{"title":"Three-dimensional SlowflowHD for Assessment of Fetal Organ and Placental Microvasculature","authors":"Toshiyuki Hata, T. Miyake, Riko Takayoshi, Aya Koyanagi, Tomomi Yamanishi, Saori Bouno, Tomomi Kawahara, Miyuki Konishi","doi":"10.5005/jp-journals-10009-1915","DOIUrl":"https://doi.org/10.5005/jp-journals-10009-1915","url":null,"abstract":"Objective: To demonstrate spatial fetal organ and placental microvasculature using three-dimensional (3D) Slow flow HD. Methods: Seventy normal pregnancies at 11−39 weeks of gestation were studied to demonstrate spatial fetal organ (brain, lung, liver, spleen, adrenal gland, and kidney) and placental microvasculature using 3D Slow flow HD with a new transabdominal mechanical matrix probe. Results: In the first trimester of pregnancy, the whole-body vascularity of the fetus could be clearly depicted. Fetal intracranial vascularity including brain arteries and the venous system could be clearly identified. Characteristic spatial microvasculature of the fetal lung, liver, spleen, adrenal gland, and kidney could be clearly recognized. The microvasculature density of each organ increased with advancing gestation. Spatial relationships among fetal organs were also noted. The increased density of the placental microvasculature with advancing gestation was evident. Conclusion: 3D Slow flow HD can clearly demonstrate spatial fetal organ and placental microvasculature. This modality may provide novel information on normal and abnormal developments of fetal organs and the placenta in clinical practice and future research.","PeriodicalId":38810,"journal":{"name":"Donald School Journal of Ultrasound in Obstetrics and Gynecology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45308591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}