{"title":"Nonlinear integrated optics in proton-exchanged lithium niobate waveguides and applications to classical and quantum optics","authors":"","doi":"10.1049/pbcs077g_ch8","DOIUrl":"https://doi.org/10.1049/pbcs077g_ch8","url":null,"abstract":"","PeriodicalId":389108,"journal":{"name":"Integrated Optics Volume 2: Characterization, devices and applications","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124689911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electric and magnetic sensors based on whispering gallery mode spherical resonators","authors":"","doi":"10.1049/pbcs077g_ch7","DOIUrl":"https://doi.org/10.1049/pbcs077g_ch7","url":null,"abstract":"","PeriodicalId":389108,"journal":{"name":"Integrated Optics Volume 2: Characterization, devices and applications","volume":"2013 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128146466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this chapter, we limit our consideration to integration of open-ring micro-cavities that are characterized with the highest achievable Q-factors among the variety of the optical microcavities. These microcavities lend themselves to the planar integration. The resonant PIC were improved tremendously during last few years. On the one hand, the Q-factors of the integrated microcavities were improved beyond 107. On the other hand, planar couplers were demonstrated for bulk resonators characterized with Q-factors exceeding 109. In this chapter, we review recent developments in the field that can be divided into two categories: (i) improvement of the quality of the planar microcavities integrated on a chip (Si [51], Si3N4 [52-63], SiO2 [64], LiNbO3 [65-70]) as well as the waveguide couplers for the planar microcavities [55,71] and (ii) integration of ultra-high-Q bulk resonators with planar waveguides to make practical PIC systems involving ultra-high-Q microcavities [72-75]. Either better manufacturing procedures or new materials were utilized to improve the microcavities. Optimally engineered waveguides were designed for bulk microcavities to enable their PIC integration. This task is espe-cially intricate for the integration of microcavities made out of low refractive index materials. The chapter is organized as follows. In Section 6.2, we present the basic terms for the description of the coupling efficiency for optical microresonators and describe the major types of the bulk evanescent field couplers. In Section 6.3, we discuss recent progress in the development of high-Q (>107) planar resonators integrated in PICs. In Section 6.4, we highlight recent results on integration of bulk microcavities with Q> 109. Section 6.5 concludes the chapter.
{"title":"Integration of optical microcavities","authors":"A. Matsko","doi":"10.1049/pbcs077g_ch6","DOIUrl":"https://doi.org/10.1049/pbcs077g_ch6","url":null,"abstract":"In this chapter, we limit our consideration to integration of open-ring micro-cavities that are characterized with the highest achievable Q-factors among the variety of the optical microcavities. These microcavities lend themselves to the planar integration. The resonant PIC were improved tremendously during last few years. On the one hand, the Q-factors of the integrated microcavities were improved beyond 107. On the other hand, planar couplers were demonstrated for bulk resonators characterized with Q-factors exceeding 109. In this chapter, we review recent developments in the field that can be divided into two categories: (i) improvement of the quality of the planar microcavities integrated on a chip (Si [51], Si3N4 [52-63], SiO2 [64], LiNbO3 [65-70]) as well as the waveguide couplers for the planar microcavities [55,71] and (ii) integration of ultra-high-Q bulk resonators with planar waveguides to make practical PIC systems involving ultra-high-Q microcavities [72-75]. Either better manufacturing procedures or new materials were utilized to improve the microcavities. Optimally engineered waveguides were designed for bulk microcavities to enable their PIC integration. This task is espe-cially intricate for the integration of microcavities made out of low refractive index materials. The chapter is organized as follows. In Section 6.2, we present the basic terms for the description of the coupling efficiency for optical microresonators and describe the major types of the bulk evanescent field couplers. In Section 6.3, we discuss recent progress in the development of high-Q (>107) planar resonators integrated in PICs. In Section 6.4, we highlight recent results on integration of bulk microcavities with Q> 109. Section 6.5 concludes the chapter.","PeriodicalId":389108,"journal":{"name":"Integrated Optics Volume 2: Characterization, devices and applications","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133117552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The optical reservoir computer: a new approach to a programmable integrated optics system based on an artificial neural network","authors":"","doi":"10.1049/pbcs077g_ch12","DOIUrl":"https://doi.org/10.1049/pbcs077g_ch12","url":null,"abstract":"","PeriodicalId":389108,"journal":{"name":"Integrated Optics Volume 2: Characterization, devices and applications","volume":"71 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114540765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Höfling, J. Beetz, M. Lermer, T. Hoang, D. Sahin, A. Fiore, A. Gaggero, F. Mattioli, Roberto Leoni, M. Kamp
Quantum information processing is an emerging field which promises secure communication or computational speed-ups for certain important computational problems if they are tackled with quantum computers. This has stimulated intense research on a variety of quantum bit (qubit) carriers and quantum technological platforms. Single photons are a prime qubit for the propagation and processing of quantum information, as they can be transmitted over long distances with low loss and manipulated by linear optical elements. However, the production, processing and detection of single photons is still mostly realized using bulky free-space or fiber-optic devices, posing severe challenges if more complex quantum circuits with high functionality going beyond a few photonic qubits are considered. Waveguide integrated quantum photonic circuits provide a route to overcome such limitations [1], where we target in this work the full integration of active and passive quantum devices on a single GaAs chip.
{"title":"Integrated quantum photonics","authors":"S. Höfling, J. Beetz, M. Lermer, T. Hoang, D. Sahin, A. Fiore, A. Gaggero, F. Mattioli, Roberto Leoni, M. Kamp","doi":"10.1049/pbcs077g_ch11","DOIUrl":"https://doi.org/10.1049/pbcs077g_ch11","url":null,"abstract":"Quantum information processing is an emerging field which promises secure communication or computational speed-ups for certain important computational problems if they are tackled with quantum computers. This has stimulated intense research on a variety of quantum bit (qubit) carriers and quantum technological platforms. Single photons are a prime qubit for the propagation and processing of quantum information, as they can be transmitted over long distances with low loss and manipulated by linear optical elements. However, the production, processing and detection of single photons is still mostly realized using bulky free-space or fiber-optic devices, posing severe challenges if more complex quantum circuits with high functionality going beyond a few photonic qubits are considered. Waveguide integrated quantum photonic circuits provide a route to overcome such limitations [1], where we target in this work the full integration of active and passive quantum devices on a single GaAs chip.","PeriodicalId":389108,"journal":{"name":"Integrated Optics Volume 2: Characterization, devices and applications","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130165414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}