Pub Date : 2014-01-01Epub Date: 2014-04-29DOI: 10.1155/2014/867179
Swakkhar Shatabda, M A Hakim Newton, Mahmood A Rashid, Duc Nghia Pham, Abdul Sattar
Protein structure prediction (PSP) has been one of the most challenging problems in computational biology for several decades. The challenge is largely due to the complexity of the all-atomic details and the unknown nature of the energy function. Researchers have therefore used simplified energy models that consider interaction potentials only between the amino acid monomers in contact on discrete lattices. The restricted nature of the lattices and the energy models poses a twofold concern regarding the assessment of the models. Can a native or a very close structure be obtained when structures are mapped to lattices? Can the contact based energy models on discrete lattices guide the search towards the native structures? In this paper, we use the protein chain lattice fitting (PCLF) problem to address the first concern; we developed a constraint-based local search algorithm for the PCLF problem for cubic and face-centered cubic lattices and found very close lattice fits for the native structures. For the second concern, we use a number of techniques to sample the conformation space and find correlations between energy functions and root mean square deviation (RMSD) distance of the lattice-based structures with the native structures. Our analysis reveals weakness of several contact based energy models used that are popular in PSP.
{"title":"How good are simplified models for protein structure prediction?","authors":"Swakkhar Shatabda, M A Hakim Newton, Mahmood A Rashid, Duc Nghia Pham, Abdul Sattar","doi":"10.1155/2014/867179","DOIUrl":"https://doi.org/10.1155/2014/867179","url":null,"abstract":"<p><p>Protein structure prediction (PSP) has been one of the most challenging problems in computational biology for several decades. The challenge is largely due to the complexity of the all-atomic details and the unknown nature of the energy function. Researchers have therefore used simplified energy models that consider interaction potentials only between the amino acid monomers in contact on discrete lattices. The restricted nature of the lattices and the energy models poses a twofold concern regarding the assessment of the models. Can a native or a very close structure be obtained when structures are mapped to lattices? Can the contact based energy models on discrete lattices guide the search towards the native structures? In this paper, we use the protein chain lattice fitting (PCLF) problem to address the first concern; we developed a constraint-based local search algorithm for the PCLF problem for cubic and face-centered cubic lattices and found very close lattice fits for the native structures. For the second concern, we use a number of techniques to sample the conformation space and find correlations between energy functions and root mean square deviation (RMSD) distance of the lattice-based structures with the native structures. Our analysis reveals weakness of several contact based energy models used that are popular in PSP. </p>","PeriodicalId":39059,"journal":{"name":"Advances in Bioinformatics","volume":"2014 ","pages":"867179"},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/867179","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32380993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-01-01Epub Date: 2014-04-15DOI: 10.1155/2014/472045
Hong Tran, Jacob Porter, Ming-An Sun, Hehuang Xie, Liqing Zhang
Background. Large-scale bisulfite treatment and short reads sequencing technology allow comprehensive estimation of methylation states of Cs in the genomes of different tissues, cell types, and developmental stages. Accurate characterization of DNA methylation is essential for understanding genotype phenotype association, gene and environment interaction, diseases, and cancer. Aligning bisulfite short reads to a reference genome has been a challenging task. We compared five bisulfite short read mapping tools, BSMAP, Bismark, BS-Seeker, BiSS, and BRAT-BW, representing two classes of mapping algorithms (hash table and suffix/prefix tries). We examined their mapping efficiency (i.e., the percentage of reads that can be mapped to the genomes), usability, running time, and effects of changing default parameter settings using both real and simulated reads. We also investigated how preprocessing data might affect mapping efficiency. Conclusion. Among the five programs compared, in terms of mapping efficiency, Bismark performs the best on the real data, followed by BiSS, BSMAP, and finally BRAT-BW and BS-Seeker with very similar performance. If CPU time is not a constraint, Bismark is a good choice of program for mapping bisulfite treated short reads. Data quality impacts a great deal mapping efficiency. Although increasing the number of mismatches allowed can increase mapping efficiency, it not only significantly slows down the program, but also runs the risk of having increased false positives. Therefore, users should carefully set the related parameters depending on the quality of their sequencing data.
{"title":"Objective and comprehensive evaluation of bisulfite short read mapping tools.","authors":"Hong Tran, Jacob Porter, Ming-An Sun, Hehuang Xie, Liqing Zhang","doi":"10.1155/2014/472045","DOIUrl":"https://doi.org/10.1155/2014/472045","url":null,"abstract":"<p><p>Background. Large-scale bisulfite treatment and short reads sequencing technology allow comprehensive estimation of methylation states of Cs in the genomes of different tissues, cell types, and developmental stages. Accurate characterization of DNA methylation is essential for understanding genotype phenotype association, gene and environment interaction, diseases, and cancer. Aligning bisulfite short reads to a reference genome has been a challenging task. We compared five bisulfite short read mapping tools, BSMAP, Bismark, BS-Seeker, BiSS, and BRAT-BW, representing two classes of mapping algorithms (hash table and suffix/prefix tries). We examined their mapping efficiency (i.e., the percentage of reads that can be mapped to the genomes), usability, running time, and effects of changing default parameter settings using both real and simulated reads. We also investigated how preprocessing data might affect mapping efficiency. Conclusion. Among the five programs compared, in terms of mapping efficiency, Bismark performs the best on the real data, followed by BiSS, BSMAP, and finally BRAT-BW and BS-Seeker with very similar performance. If CPU time is not a constraint, Bismark is a good choice of program for mapping bisulfite treated short reads. Data quality impacts a great deal mapping efficiency. Although increasing the number of mismatches allowed can increase mapping efficiency, it not only significantly slows down the program, but also runs the risk of having increased false positives. Therefore, users should carefully set the related parameters depending on the quality of their sequencing data. </p>","PeriodicalId":39059,"journal":{"name":"Advances in Bioinformatics","volume":"2014 ","pages":"472045"},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/472045","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32350526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-01-01Epub Date: 2014-01-02DOI: 10.1155/2014/871676
Morris S Jones, J Mark Carter
Listeria monocytogenes is a gram-positive, foodborne bacterium responsible for disease in humans and animals. Listeriolysin O (LLO) is a required virulence factor for the pathogenic effects of L. monocytogenes. Bioinformatics revealed conserved putative epitopes of LLO that could be used to develop monoclonal antibodies against LLO. Continuous and discontinuous epitopes were located by using four different B-cell prediction algorithms. Three-dimensional molecular models were generated to more precisely characterize the predicted antigenicity of LLO. Domain 4 was predicted to contain five of eleven continuous epitopes. A large portion of domain 4 was also predicted to comprise discontinuous immunogenic epitopes. Domain 4 of LLO may serve as an immunogen for eliciting monoclonal antibodies that can be used to study the pathogenesis of L. monocytogenes as well as develop an inexpensive assay.
{"title":"Prediction of B-Cell Epitopes in Listeriolysin O, a Cholesterol Dependent Cytolysin Secreted by Listeria monocytogenes.","authors":"Morris S Jones, J Mark Carter","doi":"10.1155/2014/871676","DOIUrl":"https://doi.org/10.1155/2014/871676","url":null,"abstract":"<p><p>Listeria monocytogenes is a gram-positive, foodborne bacterium responsible for disease in humans and animals. Listeriolysin O (LLO) is a required virulence factor for the pathogenic effects of L. monocytogenes. Bioinformatics revealed conserved putative epitopes of LLO that could be used to develop monoclonal antibodies against LLO. Continuous and discontinuous epitopes were located by using four different B-cell prediction algorithms. Three-dimensional molecular models were generated to more precisely characterize the predicted antigenicity of LLO. Domain 4 was predicted to contain five of eleven continuous epitopes. A large portion of domain 4 was also predicted to comprise discontinuous immunogenic epitopes. Domain 4 of LLO may serve as an immunogen for eliciting monoclonal antibodies that can be used to study the pathogenesis of L. monocytogenes as well as develop an inexpensive assay. </p>","PeriodicalId":39059,"journal":{"name":"Advances in Bioinformatics","volume":"2014 ","pages":"871676"},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/871676","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32112617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The preliminary study presented within this paper shows a comparative study of various texture features extracted from liver ultrasonic images by employing Multilayer Perceptron (MLP), a type of artificial neural network, to study the presence of disease conditions. An ultrasound (US) image shows echo-texture patterns, which defines the organ characteristics. Ultrasound images of liver disease conditions such as "fatty liver," "cirrhosis," and "hepatomegaly" produce distinctive echo patterns. However, various ultrasound imaging artifacts and speckle noise make these echo-texture patterns difficult to identify and often hard to distinguish visually. Here, based on the extracted features from the ultrasonic images, we employed an artificial neural network for the diagnosis of disease conditions in liver and finding of the best classifier that distinguishes between abnormal and normal conditions of the liver. Comparison of the overall performance of all the feature classifiers concluded that "mixed feature set" is the best feature set. It showed an excellent rate of accuracy for the training data set. The gray level run length matrix (GLRLM) feature shows better results when the network was tested against unknown data.
{"title":"Artificial neural network application in the diagnosis of disease conditions with liver ultrasound images.","authors":"Karthik Kalyan, Binal Jakhia, Ramachandra Dattatraya Lele, Mukund Joshi, Abhay Chowdhary","doi":"10.1155/2014/708279","DOIUrl":"https://doi.org/10.1155/2014/708279","url":null,"abstract":"<p><p>The preliminary study presented within this paper shows a comparative study of various texture features extracted from liver ultrasonic images by employing Multilayer Perceptron (MLP), a type of artificial neural network, to study the presence of disease conditions. An ultrasound (US) image shows echo-texture patterns, which defines the organ characteristics. Ultrasound images of liver disease conditions such as \"fatty liver,\" \"cirrhosis,\" and \"hepatomegaly\" produce distinctive echo patterns. However, various ultrasound imaging artifacts and speckle noise make these echo-texture patterns difficult to identify and often hard to distinguish visually. Here, based on the extracted features from the ultrasonic images, we employed an artificial neural network for the diagnosis of disease conditions in liver and finding of the best classifier that distinguishes between abnormal and normal conditions of the liver. Comparison of the overall performance of all the feature classifiers concluded that \"mixed feature set\" is the best feature set. It showed an excellent rate of accuracy for the training data set. The gray level run length matrix (GLRLM) feature shows better results when the network was tested against unknown data. </p>","PeriodicalId":39059,"journal":{"name":"Advances in Bioinformatics","volume":"2014 ","pages":"708279"},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/708279","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32708360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-01-01Epub Date: 2014-11-26DOI: 10.1155/2014/812148
Naresh Kandakatla, Geetha Ramakrishnan
Histone deacetylases 2 (HDAC2), Class I histone deacetylase (HDAC) family, emerged as an important therapeutic target for the treatment of various cancers. A total of 48 inhibitors of two different chemotypes were used to generate pharmacophore model using 3D QSAR pharmacophore generation (HypoGen algorithm) module in Discovery Studio. The best HypoGen model consists of four pharmacophore features namely, one hydrogen bond acceptor (HBA), and one hydrogen donor (HBD), one hydrophobic (HYP) and one aromatic centres, (RA). This model was validated against 20 test set compounds and this model was utilized as a 3D query for virtual screening to validate against NCI and Maybridge database and the hits further screened by Lipinski's rule of 5, and a total of 382 hit compounds from NCI and 243 hit compounds from Maybridge were found and were subjected to molecular docking in the active site of HDAC2 (PDB: 3MAX). Finally eight hit compounds, NSC108392, NSC127064, NSC110782, and NSC748337 from NCI database and MFCD01935795, MFCD00830779, MFCD00661790, and MFCD00124221 from Maybridge database, were considered as novel potential HDAC2 inhibitors.
{"title":"Ligand Based Pharmacophore Modeling and Virtual Screening Studies to Design Novel HDAC2 Inhibitors.","authors":"Naresh Kandakatla, Geetha Ramakrishnan","doi":"10.1155/2014/812148","DOIUrl":"https://doi.org/10.1155/2014/812148","url":null,"abstract":"<p><p>Histone deacetylases 2 (HDAC2), Class I histone deacetylase (HDAC) family, emerged as an important therapeutic target for the treatment of various cancers. A total of 48 inhibitors of two different chemotypes were used to generate pharmacophore model using 3D QSAR pharmacophore generation (HypoGen algorithm) module in Discovery Studio. The best HypoGen model consists of four pharmacophore features namely, one hydrogen bond acceptor (HBA), and one hydrogen donor (HBD), one hydrophobic (HYP) and one aromatic centres, (RA). This model was validated against 20 test set compounds and this model was utilized as a 3D query for virtual screening to validate against NCI and Maybridge database and the hits further screened by Lipinski's rule of 5, and a total of 382 hit compounds from NCI and 243 hit compounds from Maybridge were found and were subjected to molecular docking in the active site of HDAC2 (PDB: 3MAX). Finally eight hit compounds, NSC108392, NSC127064, NSC110782, and NSC748337 from NCI database and MFCD01935795, MFCD00830779, MFCD00661790, and MFCD00124221 from Maybridge database, were considered as novel potential HDAC2 inhibitors. </p>","PeriodicalId":39059,"journal":{"name":"Advances in Bioinformatics","volume":"2014 ","pages":"812148"},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/812148","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32923140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-01-01Epub Date: 2014-12-11DOI: 10.1155/2014/181056
Enas M F El Houby
Hepatitis C which is a widely spread disease all over the world is a fatal liver disease caused by Hepatitis C Virus (HCV). The only approved therapy is interferon plus ribavirin. The number of responders to this treatment is low, while its cost is high and side effects are undesirable. Treatment response prediction will help in reducing the patients who suffer from the side effects and high costs without achieving recovery. The aim of this research is to develop a framework which can select the best model to predict HCV patients' response to the treatment of HCV from clinical information. The framework contains three phases which are preprocessing phase to prepare the data for applying Data Mining (DM) techniques, DM phase to apply different DM techniques, and evaluation phase to evaluate and compare the performance of the built models and select the best model as the recommended one. Different DM techniques had been applied which are associative classification, artificial neural network, and decision tree to evaluate the framework. The experimental results showed the effectiveness of the framework in selecting the best model which is the model built by associative classification using histology activity index, fibrosis stage, and alanine amino transferase.
{"title":"A framework for prediction of response to HCV therapy using different data mining techniques.","authors":"Enas M F El Houby","doi":"10.1155/2014/181056","DOIUrl":"https://doi.org/10.1155/2014/181056","url":null,"abstract":"<p><p>Hepatitis C which is a widely spread disease all over the world is a fatal liver disease caused by Hepatitis C Virus (HCV). The only approved therapy is interferon plus ribavirin. The number of responders to this treatment is low, while its cost is high and side effects are undesirable. Treatment response prediction will help in reducing the patients who suffer from the side effects and high costs without achieving recovery. The aim of this research is to develop a framework which can select the best model to predict HCV patients' response to the treatment of HCV from clinical information. The framework contains three phases which are preprocessing phase to prepare the data for applying Data Mining (DM) techniques, DM phase to apply different DM techniques, and evaluation phase to evaluate and compare the performance of the built models and select the best model as the recommended one. Different DM techniques had been applied which are associative classification, artificial neural network, and decision tree to evaluate the framework. The experimental results showed the effectiveness of the framework in selecting the best model which is the model built by associative classification using histology activity index, fibrosis stage, and alanine amino transferase. </p>","PeriodicalId":39059,"journal":{"name":"Advances in Bioinformatics","volume":"2014 ","pages":"181056"},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/181056","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32967370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-01-01Epub Date: 2014-12-17DOI: 10.1155/2014/324753
Zainab Jahangir, Waqar Ahmad, Khadija Shabbiri
Impaired insulin signaling has been thought of as important step in both Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM). Posttranslational modifications (PTMs) regulate functions and interaction of insulin with insulin receptors substrates (IRSs) and activate insulin signaling downstream pathways via autophosphorylation on several tyrosine (TYR) residues on IRSs. Two important insulin receptor substrates 1 and 2 are widely expressed in human, and alternative phosphorylation on their serine (Ser) and threonine (Thr) residues has been known to block the Tyr phosphorylation of IRSs, thus inhibiting insulin signaling and promoting insulin resistance. Like phosphorylation, O-glycosylation modification is important PTM and inhibits phosphorylation on same or neighboring Ser/Thr residues, often called Yin Yang sites. Both IRS-1 and IRS-2 have been shown to be O-glycosylated; however exact sites are not determined yet. In this study, by using neuronal network based prediction methods, we found more than 50 Ser/Thr residues that have potential to be O-glycosylated and may act as possible sites as well. Moreover, alternative phosphorylation and O-glycosylation on IRS-1 Ser-312, 984, 1037, and 1101 may act as possible therapeutic targets to minimize the risk of AD and T2DM.
{"title":"Alternate Phosphorylation/O-GlcNAc Modification on Human Insulin IRSs: A Road towards Impaired Insulin Signaling in Alzheimer and Diabetes.","authors":"Zainab Jahangir, Waqar Ahmad, Khadija Shabbiri","doi":"10.1155/2014/324753","DOIUrl":"https://doi.org/10.1155/2014/324753","url":null,"abstract":"<p><p>Impaired insulin signaling has been thought of as important step in both Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM). Posttranslational modifications (PTMs) regulate functions and interaction of insulin with insulin receptors substrates (IRSs) and activate insulin signaling downstream pathways via autophosphorylation on several tyrosine (TYR) residues on IRSs. Two important insulin receptor substrates 1 and 2 are widely expressed in human, and alternative phosphorylation on their serine (Ser) and threonine (Thr) residues has been known to block the Tyr phosphorylation of IRSs, thus inhibiting insulin signaling and promoting insulin resistance. Like phosphorylation, O-glycosylation modification is important PTM and inhibits phosphorylation on same or neighboring Ser/Thr residues, often called Yin Yang sites. Both IRS-1 and IRS-2 have been shown to be O-glycosylated; however exact sites are not determined yet. In this study, by using neuronal network based prediction methods, we found more than 50 Ser/Thr residues that have potential to be O-glycosylated and may act as possible sites as well. Moreover, alternative phosphorylation and O-glycosylation on IRS-1 Ser-312, 984, 1037, and 1101 may act as possible therapeutic targets to minimize the risk of AD and T2DM. </p>","PeriodicalId":39059,"journal":{"name":"Advances in Bioinformatics","volume":"2014 ","pages":"324753"},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/324753","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32967371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-01-01Epub Date: 2014-03-16DOI: 10.1155/2014/985968
Mahmood A Rashid, Swakkhar Shatabda, M A Hakim Newton, Md Tamjidul Hoque, Abdul Sattar
Protein structure prediction is computationally a very challenging problem. A large number of existing search algorithms attempt to solve the problem by exploring possible structures and finding the one with the minimum free energy. However, these algorithms perform poorly on large sized proteins due to an astronomically wide search space. In this paper, we present a multipoint spiral search framework that uses parallel processing techniques to expedite exploration by starting from different points. In our approach, a set of random initial solutions are generated and distributed to different threads. We allow each thread to run for a predefined period of time. The improved solutions are stored threadwise. When the threads finish, the solutions are merged together and the duplicates are removed. A selected distinct set of solutions are then split to different threads again. In our ab initio protein structure prediction method, we use the three-dimensional face-centred-cubic lattice for structure-backbone mapping. We use both the low resolution hydrophobic-polar energy model and the high-resolution 20 × 20 energy model for search guiding. The experimental results show that our new parallel framework significantly improves the results obtained by the state-of-the-art single-point search approaches for both energy models on three-dimensional face-centred-cubic lattice. We also experimentally show the effectiveness of mixing energy models within parallel threads.
{"title":"A Parallel Framework for Multipoint Spiral Search in ab Initio Protein Structure Prediction.","authors":"Mahmood A Rashid, Swakkhar Shatabda, M A Hakim Newton, Md Tamjidul Hoque, Abdul Sattar","doi":"10.1155/2014/985968","DOIUrl":"https://doi.org/10.1155/2014/985968","url":null,"abstract":"<p><p>Protein structure prediction is computationally a very challenging problem. A large number of existing search algorithms attempt to solve the problem by exploring possible structures and finding the one with the minimum free energy. However, these algorithms perform poorly on large sized proteins due to an astronomically wide search space. In this paper, we present a multipoint spiral search framework that uses parallel processing techniques to expedite exploration by starting from different points. In our approach, a set of random initial solutions are generated and distributed to different threads. We allow each thread to run for a predefined period of time. The improved solutions are stored threadwise. When the threads finish, the solutions are merged together and the duplicates are removed. A selected distinct set of solutions are then split to different threads again. In our ab initio protein structure prediction method, we use the three-dimensional face-centred-cubic lattice for structure-backbone mapping. We use both the low resolution hydrophobic-polar energy model and the high-resolution 20 × 20 energy model for search guiding. The experimental results show that our new parallel framework significantly improves the results obtained by the state-of-the-art single-point search approaches for both energy models on three-dimensional face-centred-cubic lattice. We also experimentally show the effectiveness of mixing energy models within parallel threads. </p>","PeriodicalId":39059,"journal":{"name":"Advances in Bioinformatics","volume":"2014 ","pages":"985968"},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/985968","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32271915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-01-01Epub Date: 2014-08-17DOI: 10.1155/2014/278385
Majid Masso, Iosif I Vaisman
The AUTO-MUTE 2.0 stand-alone software package includes a collection of programs for predicting functional changes to proteins upon single residue substitutions, developed by combining structure-based features with trained statistical learning models. Three of the predictors evaluate changes to protein stability upon mutation, each complementing a distinct experimental approach. Two additional classifiers are available, one for predicting activity changes due to residue replacements and the other for determining the disease potential of mutations associated with nonsynonymous single nucleotide polymorphisms (nsSNPs) in human proteins. These five command-line driven tools, as well as all the supporting programs, complement those that run our AUTO-MUTE web-based server. Nevertheless, all the codes have been rewritten and substantially altered for the new portable software, and they incorporate several new features based on user feedback. Included among these upgrades is the ability to perform three highly requested tasks: to run "big data" batch jobs; to generate predictions using modified protein data bank (PDB) structures, and unpublished personal models prepared using standard PDB file formatting; and to utilize NMR structure files that contain multiple models.
{"title":"AUTO-MUTE 2.0: A Portable Framework with Enhanced Capabilities for Predicting Protein Functional Consequences upon Mutation.","authors":"Majid Masso, Iosif I Vaisman","doi":"10.1155/2014/278385","DOIUrl":"https://doi.org/10.1155/2014/278385","url":null,"abstract":"<p><p>The AUTO-MUTE 2.0 stand-alone software package includes a collection of programs for predicting functional changes to proteins upon single residue substitutions, developed by combining structure-based features with trained statistical learning models. Three of the predictors evaluate changes to protein stability upon mutation, each complementing a distinct experimental approach. Two additional classifiers are available, one for predicting activity changes due to residue replacements and the other for determining the disease potential of mutations associated with nonsynonymous single nucleotide polymorphisms (nsSNPs) in human proteins. These five command-line driven tools, as well as all the supporting programs, complement those that run our AUTO-MUTE web-based server. Nevertheless, all the codes have been rewritten and substantially altered for the new portable software, and they incorporate several new features based on user feedback. Included among these upgrades is the ability to perform three highly requested tasks: to run \"big data\" batch jobs; to generate predictions using modified protein data bank (PDB) structures, and unpublished personal models prepared using standard PDB file formatting; and to utilize NMR structure files that contain multiple models. </p>","PeriodicalId":39059,"journal":{"name":"Advances in Bioinformatics","volume":"2014 ","pages":"278385"},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/278385","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32647735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carboxydothermus hydrogenoformans is a carboxydotrophic hydrogenogenic bacterium species that produces hydrogen molecule by utilizing carbon monoxide (CO) or pyruvate as a carbon source. To investigate the underlying biochemical mechanism of hydrogen production, an elementary mode analysis of acetyl-CoA pathway was performed to determine the intermediate fluxes by combining linear programming (LP) method available in CellNetAnalyzer software. We hypothesized that addition of enzymes necessary for carbon monoxide fixation and pyruvate dissimilation would enhance the theoretical yield of hydrogen. An in silico gene knockout of pyk, pykC, and mdh genes of modeled acetyl-CoA pathway allows the maximum theoretical hydrogen yield of 47.62 mmol/gCDW/h for 1 mole of carbon monoxide (CO) uptake. The obtained hydrogen yield is comparatively two times greater than the previous experimental data. Therefore, it could be concluded that this elementary flux mode analysis is a crucial way to achieve efficient hydrogen production through acetyl-CoA pathway and act as a model for strain improvement.
{"title":"Elementary Flux Mode Analysis of Acetyl-CoA Pathway in Carboxydothermus hydrogenoformans Z-2901.","authors":"Rajadurai Chinnasamy Perumal, Ashok Selvaraj, Gopal Ramesh Kumar","doi":"10.1155/2014/928038","DOIUrl":"https://doi.org/10.1155/2014/928038","url":null,"abstract":"<p><p>Carboxydothermus hydrogenoformans is a carboxydotrophic hydrogenogenic bacterium species that produces hydrogen molecule by utilizing carbon monoxide (CO) or pyruvate as a carbon source. To investigate the underlying biochemical mechanism of hydrogen production, an elementary mode analysis of acetyl-CoA pathway was performed to determine the intermediate fluxes by combining linear programming (LP) method available in CellNetAnalyzer software. We hypothesized that addition of enzymes necessary for carbon monoxide fixation and pyruvate dissimilation would enhance the theoretical yield of hydrogen. An in silico gene knockout of pyk, pykC, and mdh genes of modeled acetyl-CoA pathway allows the maximum theoretical hydrogen yield of 47.62 mmol/gCDW/h for 1 mole of carbon monoxide (CO) uptake. The obtained hydrogen yield is comparatively two times greater than the previous experimental data. Therefore, it could be concluded that this elementary flux mode analysis is a crucial way to achieve efficient hydrogen production through acetyl-CoA pathway and act as a model for strain improvement. </p>","PeriodicalId":39059,"journal":{"name":"Advances in Bioinformatics","volume":"2014 ","pages":"928038"},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/928038","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32338574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}