Pub Date : 2024-01-01Epub Date: 2024-09-07DOI: 10.1016/bs.enz.2024.05.005
Luigi Pisano, Martina Turco, Claudiu T Supuran
Tyrosinase is involved in several human diseases, among which hypopigmentation and depigmentation conditions (vitiligo, idiopathic guttate hypomelanosis, pityriasis versicolor, pityriasis alba) and hyperpigmentations (melasma, lentigines, post-inflammatory and periorbital hyperpigmentation, cervical idiopathic poikiloderma and acanthosis nigricans). There are increasing evidences that tyrosinase plays a relevant role in the formation and progression of melanoma, a difficult to treat skin tumor. Hydroquinone, azelaic acid and tretinoin (all-trans-retinoic acid) are clinically used in the management of some hyperpigmentations, whereas many novel chemotypes acting as tyrosinase inhibitors with potential antimelanoma action are being investigated. Kojic acid, hydroquinone, its glycosylated derivative arbutin, or the resorcinol derivative rucinol are used in cosmesis in creams as skin whitening agents, whereas no antimelanoma tyrosinase inhibitor reached clinical trials so far, although thiamidol is a recently approved new tyrosinase inhibitor for the treatment of melasma. Kojic acid and vitamin C are used for avoiding vegetable/food oxidative browning due to the tyrosinase-catalyzed reactions, whereas bacterial enzymes show potential in biotechnological applications, for the production of mixed melanins, for protein cross-linking reactions, for producing phenol(s) biosensors, of for the production of L-DOPA, an anti-Parkinson's disease drug.
酪氨酸酶与多种人类疾病有关,其中包括色素减退和色素沉着病(白癜风、特发性凹陷性色素减退症、花斑癣、白癣)和色素沉着病(黄褐斑、雀斑、炎症后和眶周色素沉着、特发性颈椎病和黑棘皮病)。越来越多的证据表明,酪氨酸酶在黑色素瘤这种难以治疗的皮肤肿瘤的形成和发展过程中起着重要作用。对苯二酚、壬二酸和维甲酸(全反式维甲酸)被临床用于治疗某些色素沉着,而许多新型化学物质作为酪氨酸酶抑制剂,具有潜在的抗黑色素瘤作用,目前正在研究之中。曲酸、对苯二酚、其糖基化衍生物熊果苷或间苯二酚衍生物芦丁醇作为皮肤美白剂被用于化妆品的面霜中,而迄今为止还没有抗黑色素瘤的酪氨酸酶抑制剂进入临床试验阶段,尽管噻吗洛尔是最近批准用于治疗黄褐斑的一种新的酪氨酸酶抑制剂。曲酸和维生素 C 被用于避免蔬菜/食品因酪氨酸酶催化反应而氧化变褐,而细菌酶则在生物技术应用方面显示出潜力,可用于生产混合黑色素、蛋白质交联反应、生产苯酚生物传感器,以及生产抗帕金森病药物 L-DOPA。
{"title":"Biomedical applications of tyrosinases and tyrosinase inhibitors.","authors":"Luigi Pisano, Martina Turco, Claudiu T Supuran","doi":"10.1016/bs.enz.2024.05.005","DOIUrl":"https://doi.org/10.1016/bs.enz.2024.05.005","url":null,"abstract":"<p><p>Tyrosinase is involved in several human diseases, among which hypopigmentation and depigmentation conditions (vitiligo, idiopathic guttate hypomelanosis, pityriasis versicolor, pityriasis alba) and hyperpigmentations (melasma, lentigines, post-inflammatory and periorbital hyperpigmentation, cervical idiopathic poikiloderma and acanthosis nigricans). There are increasing evidences that tyrosinase plays a relevant role in the formation and progression of melanoma, a difficult to treat skin tumor. Hydroquinone, azelaic acid and tretinoin (all-trans-retinoic acid) are clinically used in the management of some hyperpigmentations, whereas many novel chemotypes acting as tyrosinase inhibitors with potential antimelanoma action are being investigated. Kojic acid, hydroquinone, its glycosylated derivative arbutin, or the resorcinol derivative rucinol are used in cosmesis in creams as skin whitening agents, whereas no antimelanoma tyrosinase inhibitor reached clinical trials so far, although thiamidol is a recently approved new tyrosinase inhibitor for the treatment of melasma. Kojic acid and vitamin C are used for avoiding vegetable/food oxidative browning due to the tyrosinase-catalyzed reactions, whereas bacterial enzymes show potential in biotechnological applications, for the production of mixed melanins, for protein cross-linking reactions, for producing phenol(s) biosensors, of for the production of L-DOPA, an anti-Parkinson's disease drug.</p>","PeriodicalId":39097,"journal":{"name":"Enzymes","volume":"56 ","pages":"261-280"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142297667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-09-10DOI: 10.1016/bs.enz.2024.06.005
Fosca Errante, Lucrezia Sforzi, Claudiu T Supuran, Anna Maria Papini, Paolo Rovero
Melanin, which is produced by melanocytes and spread over keratinocytes, is responsible for human skin browning. There are several processes involved in melanogenesis, mostly prompted by enzymatic activities. Tyrosinase (TYR), a copper containing metalloenzyme, is considered the main actor in melanin production, as it catalyzes two crucial steps that modify tyrosine residues in dopaquinone. For this reason, TYR inhibition has been exploited as a possible mechanism of modulation of hyper melanogenesis. There are various types of molecules used to block TYR activity, principally used as skin whitening agents in cosmetic products, e.g., tretinoin, hydroquinone, azelaic acid, kojic acid, arbutin and peptides. Peptides are highly valued for their versatile nature, making them promising candidates for various functions. Their specificity often leads to excellent safety, tolerability, and efficacy in humans, which can be considered their primary advantage over traditional small molecules. There are several examples of tyrosinase inhibitor peptides (TIPs) operating as possible hypo-pigmenting agents, which can be classified according to their origin: natural, hybrid or synthetically produced. Moreover, the possibility of variating their backbones, introducing non-canonical amino acids or modifying one or more peptide bond(s), to obtain peptidomimetic molecules, is an added value to avoid or delay proteolytic activity, while the possibility of conjugation with other bioactive peptides or organic moieties can bring other specific activity leading to dual-functional peptides.
{"title":"Peptide and peptidomimetic tyrosinase inhibitors.","authors":"Fosca Errante, Lucrezia Sforzi, Claudiu T Supuran, Anna Maria Papini, Paolo Rovero","doi":"10.1016/bs.enz.2024.06.005","DOIUrl":"10.1016/bs.enz.2024.06.005","url":null,"abstract":"<p><p>Melanin, which is produced by melanocytes and spread over keratinocytes, is responsible for human skin browning. There are several processes involved in melanogenesis, mostly prompted by enzymatic activities. Tyrosinase (TYR), a copper containing metalloenzyme, is considered the main actor in melanin production, as it catalyzes two crucial steps that modify tyrosine residues in dopaquinone. For this reason, TYR inhibition has been exploited as a possible mechanism of modulation of hyper melanogenesis. There are various types of molecules used to block TYR activity, principally used as skin whitening agents in cosmetic products, e.g., tretinoin, hydroquinone, azelaic acid, kojic acid, arbutin and peptides. Peptides are highly valued for their versatile nature, making them promising candidates for various functions. Their specificity often leads to excellent safety, tolerability, and efficacy in humans, which can be considered their primary advantage over traditional small molecules. There are several examples of tyrosinase inhibitor peptides (TIPs) operating as possible hypo-pigmenting agents, which can be classified according to their origin: natural, hybrid or synthetically produced. Moreover, the possibility of variating their backbones, introducing non-canonical amino acids or modifying one or more peptide bond(s), to obtain peptidomimetic molecules, is an added value to avoid or delay proteolytic activity, while the possibility of conjugation with other bioactive peptides or organic moieties can bring other specific activity leading to dual-functional peptides.</p>","PeriodicalId":39097,"journal":{"name":"Enzymes","volume":"56 ","pages":"135-189"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142297673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01Epub Date: 2023-09-27DOI: 10.1016/bs.enz.2023.09.001
Fuyuhiko Tamanoi
Since its publication in 1950, the series "The Enzymes" has been established as an important reference book for researchers and students in the field of enzymology, biochemistry and biophysics and medical research. A number of scientists have served as a series editor for the Enzymes. Topics covered range from characterizations of various enzymes, biochemical processes and medical applications. This chapter provides an overview of the history of The Enzymes.
{"title":"History of The Enzymes: 1950-2023.","authors":"Fuyuhiko Tamanoi","doi":"10.1016/bs.enz.2023.09.001","DOIUrl":"10.1016/bs.enz.2023.09.001","url":null,"abstract":"<p><p>Since its publication in 1950, the series \"The Enzymes\" has been established as an important reference book for researchers and students in the field of enzymology, biochemistry and biophysics and medical research. A number of scientists have served as a series editor for the Enzymes. Topics covered range from characterizations of various enzymes, biochemical processes and medical applications. This chapter provides an overview of the history of The Enzymes.</p>","PeriodicalId":39097,"journal":{"name":"Enzymes","volume":"54 ","pages":"3-11"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72015664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01Epub Date: 2023-04-21DOI: 10.1016/bs.enz.2023.03.003
Jonatan Caroli, Andrea Mattevi
NPAC is a transcriptional co-activator widely associated with the H3K36me3 epigenetic marks present in the gene bodies. NPAC plays a fundamental role in RNA polymerase progression, and its depletion downregulates gene transcription. In this chapter, we review the current knowledge on the functional and structural features of this multi-domain protein. NPAC (also named GLYR1 or NP60) contains a PWWP motif, a chromatin binder and epigenetic reader that is proposed to weaken the DNA-histone contacts facilitating polymerase passage through the nucleosomes. The C-terminus of NPAC is a catalytically inactive dehydrogenase domain that forms a stable and rigid tetramer acting as an oligomerization module for the formation of co-transcriptional multimeric complexes. The PWWP and dehydrogenase domains are connected by a long, mostly disordered, linker that comprises putative sites for protein and DNA interactions. A short dodecapeptide sequence (residues 214-225) forms the binding site for LSD2, a flavin-dependent lysine-specific histone demethylase. This stretch of residues binds on the surface of LSD2 and facilitates the capture and processing of the H3 tail in the nucleosome context, thus promoting the H3K4me1/2 epigenetic mark removal. LSD2 is associated with other two chromatin modifiers, G9a and NSD3. The LSD2-G9a-NSD3 complex modifies the pattern of the post translational modifications deposited on histones, thus converting the relaxed chromatin into a transcriptionally refractory state after the RNA polymerase passage. NPAC is a scaffolding factor that organizes and coordinates the epigenetic activities required for optimal transcription elongation.
{"title":"The NPAC-LSD2 complex in nucleosome demethylation.","authors":"Jonatan Caroli, Andrea Mattevi","doi":"10.1016/bs.enz.2023.03.003","DOIUrl":"10.1016/bs.enz.2023.03.003","url":null,"abstract":"<p><p>NPAC is a transcriptional co-activator widely associated with the H3K36me3 epigenetic marks present in the gene bodies. NPAC plays a fundamental role in RNA polymerase progression, and its depletion downregulates gene transcription. In this chapter, we review the current knowledge on the functional and structural features of this multi-domain protein. NPAC (also named GLYR1 or NP60) contains a PWWP motif, a chromatin binder and epigenetic reader that is proposed to weaken the DNA-histone contacts facilitating polymerase passage through the nucleosomes. The C-terminus of NPAC is a catalytically inactive dehydrogenase domain that forms a stable and rigid tetramer acting as an oligomerization module for the formation of co-transcriptional multimeric complexes. The PWWP and dehydrogenase domains are connected by a long, mostly disordered, linker that comprises putative sites for protein and DNA interactions. A short dodecapeptide sequence (residues 214-225) forms the binding site for LSD2, a flavin-dependent lysine-specific histone demethylase. This stretch of residues binds on the surface of LSD2 and facilitates the capture and processing of the H3 tail in the nucleosome context, thus promoting the H3K4me1/2 epigenetic mark removal. LSD2 is associated with other two chromatin modifiers, G9a and NSD3. The LSD2-G9a-NSD3 complex modifies the pattern of the post translational modifications deposited on histones, thus converting the relaxed chromatin into a transcriptionally refractory state after the RNA polymerase passage. NPAC is a scaffolding factor that organizes and coordinates the epigenetic activities required for optimal transcription elongation.</p>","PeriodicalId":39097,"journal":{"name":"Enzymes","volume":"53 ","pages":"97-111"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41157659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01Epub Date: 2023-07-31DOI: 10.1016/bs.enz.2023.07.002
Howard T Jacobs
Although recognized earlier as subcellular entities by microscopists, mitochondria have been the subject of functional studies since 1922, when their biochemical similarities with bacteria were first noted. In this overview I trace the history of research on mitochondria from that time up to the present day, focussing on the major milestones of the overlapping eras of mitochondrial biochemistry, genetics, pathology and cell biology, and its explosion into new areas in the past 25 years. Nowadays, mitochondria are considered to be fully integrated into cell physiology, rather than serving specific functions in isolation.
{"title":"A century of mitochondrial research, 1922-2022.","authors":"Howard T Jacobs","doi":"10.1016/bs.enz.2023.07.002","DOIUrl":"10.1016/bs.enz.2023.07.002","url":null,"abstract":"<p><p>Although recognized earlier as subcellular entities by microscopists, mitochondria have been the subject of functional studies since 1922, when their biochemical similarities with bacteria were first noted. In this overview I trace the history of research on mitochondria from that time up to the present day, focussing on the major milestones of the overlapping eras of mitochondrial biochemistry, genetics, pathology and cell biology, and its explosion into new areas in the past 25 years. Nowadays, mitochondria are considered to be fully integrated into cell physiology, rather than serving specific functions in isolation.</p>","PeriodicalId":39097,"journal":{"name":"Enzymes","volume":"54 ","pages":"37-70"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72015659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01Epub Date: 2023-07-28DOI: 10.1016/bs.enz.2023.07.001
Lee Bardwell, Jeremy Thorner
Discovery of the class of protein kinase now dubbed a mitogen (or messenger)-activated protein kinase (MAPK) is an illustrative example of how disparate lines of investigation can converge and reveal an enzyme family universally conserved among eukaryotes, from single-celled microbes to humans. Moreover, elucidation of the circuitry controlling MAPK function defined a now overarching principle in enzyme regulation-the concept of an activation cascade mediated by sequential phosphorylation events. Particularly ground-breaking for this field of exploration were the contributions of genetic approaches conducted using several model organisms, but especially the budding yeast Saccharomyces cerevisiae. Notably, examination of how haploid yeast cells respond to their secreted peptide mating pheromones was crucial in pinpointing genes encoding MAPKs and their upstream activators. Fully contemporaneous biochemical analysis of the activities elicited upon stimulation of mammalian cells by insulin and other growth- and differentiation-inducing factors lead eventually to the demonstration that components homologous to those in yeast were involved. Continued studies of these pathways in yeast were integral to other foundational discoveries in MAPK signaling, including the roles of tethering, scaffolding and docking interactions.
{"title":"Mitogen-activated protein kinase (MAPK) cascades-A yeast perspective.","authors":"Lee Bardwell, Jeremy Thorner","doi":"10.1016/bs.enz.2023.07.001","DOIUrl":"10.1016/bs.enz.2023.07.001","url":null,"abstract":"<p><p>Discovery of the class of protein kinase now dubbed a mitogen (or messenger)-activated protein kinase (MAPK) is an illustrative example of how disparate lines of investigation can converge and reveal an enzyme family universally conserved among eukaryotes, from single-celled microbes to humans. Moreover, elucidation of the circuitry controlling MAPK function defined a now overarching principle in enzyme regulation-the concept of an activation cascade mediated by sequential phosphorylation events. Particularly ground-breaking for this field of exploration were the contributions of genetic approaches conducted using several model organisms, but especially the budding yeast Saccharomyces cerevisiae. Notably, examination of how haploid yeast cells respond to their secreted peptide mating pheromones was crucial in pinpointing genes encoding MAPKs and their upstream activators. Fully contemporaneous biochemical analysis of the activities elicited upon stimulation of mammalian cells by insulin and other growth- and differentiation-inducing factors lead eventually to the demonstration that components homologous to those in yeast were involved. Continued studies of these pathways in yeast were integral to other foundational discoveries in MAPK signaling, including the roles of tethering, scaffolding and docking interactions.</p>","PeriodicalId":39097,"journal":{"name":"Enzymes","volume":"54 ","pages":"137-170"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72015666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01Epub Date: 2023-09-29DOI: 10.1016/bs.enz.2023.07.008
Szymon J Ciesielski, Cameron Young, Elena J Ciesielska, Grzegorz L Ciesielski
Proteins are the most structurally diverse cellular biomolecules that act as molecular machines driving essential activities of all living organisms. To be functional, most of the proteins need to fold into a specific three-dimensional structure, which on one hand should be stable enough to oppose disruptive conditions and on the other hand flexible enough to allow conformational dynamics necessary for their biological functions. This compromise between stability and dynamics makes proteins susceptible to stress-induced misfolding and aggregation. Moreover, the folding process itself is intrinsically prone to conformational errors. Molecular chaperones are proteins that mitigate folding defects and maintain the structural integrity of the cellular proteome. Promiscuous Hsp70 chaperones are central to these processes and their activity depends on the interaction with obligatory J-domain protein (JDP) partners. In this review, we discuss structural aspects of Hsp70s, JDPs, and their interaction in the context of biological activities.
{"title":"The Hsp70 and JDP proteins: Structure-function perspective on molecular chaperone activity.","authors":"Szymon J Ciesielski, Cameron Young, Elena J Ciesielska, Grzegorz L Ciesielski","doi":"10.1016/bs.enz.2023.07.008","DOIUrl":"10.1016/bs.enz.2023.07.008","url":null,"abstract":"<p><p>Proteins are the most structurally diverse cellular biomolecules that act as molecular machines driving essential activities of all living organisms. To be functional, most of the proteins need to fold into a specific three-dimensional structure, which on one hand should be stable enough to oppose disruptive conditions and on the other hand flexible enough to allow conformational dynamics necessary for their biological functions. This compromise between stability and dynamics makes proteins susceptible to stress-induced misfolding and aggregation. Moreover, the folding process itself is intrinsically prone to conformational errors. Molecular chaperones are proteins that mitigate folding defects and maintain the structural integrity of the cellular proteome. Promiscuous Hsp70 chaperones are central to these processes and their activity depends on the interaction with obligatory J-domain protein (JDP) partners. In this review, we discuss structural aspects of Hsp70s, JDPs, and their interaction in the context of biological activities.</p>","PeriodicalId":39097,"journal":{"name":"Enzymes","volume":"54 ","pages":"221-245"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72015668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01Epub Date: 2023-04-19DOI: 10.1016/bs.enz.2023.03.002
James T Kadonaga
Nucleosomes are intrinsically immobile, and thus, ATP-dependent chromatin remodeling factors are needed to alter nucleosomes to facilitate DNA-directed processes such as transcription. More generally, chromatin remodeling factors mediate chromatin dynamics, which encompasses nucleosome assembly, movement, and disruption as well as histone exchange. Here, I present selected thoughts and perspectives on the past, present, and future of these fascinating ATP-driven motor proteins.
{"title":"Perspectives on ATP-dependent chromatin remodeling.","authors":"James T Kadonaga","doi":"10.1016/bs.enz.2023.03.002","DOIUrl":"10.1016/bs.enz.2023.03.002","url":null,"abstract":"<p><p>Nucleosomes are intrinsically immobile, and thus, ATP-dependent chromatin remodeling factors are needed to alter nucleosomes to facilitate DNA-directed processes such as transcription. More generally, chromatin remodeling factors mediate chromatin dynamics, which encompasses nucleosome assembly, movement, and disruption as well as histone exchange. Here, I present selected thoughts and perspectives on the past, present, and future of these fascinating ATP-driven motor proteins.</p>","PeriodicalId":39097,"journal":{"name":"Enzymes","volume":"53 ","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10552720/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41169574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01Epub Date: 2023-07-28DOI: 10.1016/bs.enz.2023.06.001
Imad Soukar, Anjalie Amarasinghe, Lori A Pile
Post-translational modifications of histone proteins control the expression of genes. Metabolites from central and one-carbon metabolism act as donor moieties to modify histones and regulate gene expression. Thus, histone modification and gene regulation are connected to the metabolite status of the cell. Histone modifiers, such as the SIN3 complex, regulate genes involved in proliferation and metabolism. The SIN3 complex contains a histone deacetylase and a histone demethylase, which regulate the chromatin landscape and gene expression. In this chapter, we review the cross-talk between metabolic pathways that produce donor moieties, and epigenetic complexes regulating proliferation and metabolic genes. This cross-talk between gene regulation and metabolism is tightly controlled, and disruption of this cross-talk leads to metabolic diseases. We discuss promising therapeutics that directly regulate histone modifiers, and can affect the metabolic status of the cell, alleviating some metabolic diseases.
{"title":"Coordination of cross-talk between metabolism and epigenetic regulation by the SIN3 complex.","authors":"Imad Soukar, Anjalie Amarasinghe, Lori A Pile","doi":"10.1016/bs.enz.2023.06.001","DOIUrl":"https://doi.org/10.1016/bs.enz.2023.06.001","url":null,"abstract":"<p><p>Post-translational modifications of histone proteins control the expression of genes. Metabolites from central and one-carbon metabolism act as donor moieties to modify histones and regulate gene expression. Thus, histone modification and gene regulation are connected to the metabolite status of the cell. Histone modifiers, such as the SIN3 complex, regulate genes involved in proliferation and metabolism. The SIN3 complex contains a histone deacetylase and a histone demethylase, which regulate the chromatin landscape and gene expression. In this chapter, we review the cross-talk between metabolic pathways that produce donor moieties, and epigenetic complexes regulating proliferation and metabolic genes. This cross-talk between gene regulation and metabolism is tightly controlled, and disruption of this cross-talk leads to metabolic diseases. We discuss promising therapeutics that directly regulate histone modifiers, and can affect the metabolic status of the cell, alleviating some metabolic diseases.</p>","PeriodicalId":39097,"journal":{"name":"Enzymes","volume":"53 ","pages":"33-68"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41168895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01Epub Date: 2023-03-30DOI: 10.1016/bs.enz.2023.03.001
Robert P Hausinger
Metalloenzymes have been detailed in The Enzymes since its inception over half a century ago. Here, I review selected metal-containing enzyme highlights from early chapters in this series and I describe advances made since those contributions. Three topics are emphasized: nickel-containing enzymes, Fe(II)/2-oxoglutarate-dependent oxygenases, and enzymes containing non-canonical iron-sulfur clusters.
{"title":"Five decades of metalloenzymology.","authors":"Robert P Hausinger","doi":"10.1016/bs.enz.2023.03.001","DOIUrl":"10.1016/bs.enz.2023.03.001","url":null,"abstract":"<p><p>Metalloenzymes have been detailed in The Enzymes since its inception over half a century ago. Here, I review selected metal-containing enzyme highlights from early chapters in this series and I describe advances made since those contributions. Three topics are emphasized: nickel-containing enzymes, Fe(II)/2-oxoglutarate-dependent oxygenases, and enzymes containing non-canonical iron-sulfur clusters.</p>","PeriodicalId":39097,"journal":{"name":"Enzymes","volume":"54 ","pages":"71-105"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72015661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}