Pub Date : 2016-01-01Epub Date: 2016-06-30DOI: 10.2174/1874070701610010248
Lillian L Laemmle, Justus B Cohen, Joseph C Glorioso
The transcription factor GATA binding protein 4 (GATA4) is a vital regulator of cardiac programming that acts by inducing the expression of many different genes involved in cardiomyogenesis. Here we generated a D3 mouse embryonic stem cell line that constitutively expresses high levels of GATA4 and show that these cells have dramatically increased cardiogenic potential compared to an eGFP-expressing control cell line. Embryoid bodies (EB) derived from the D3-GATA4 line displayed increased levels of cardiac gene expression and showed more abundant cardiomyocyte differentiation than control eGFP EB. These cells and two additional lines expressing lower levels of GATA4 provide a platform to screen previously untested cardiac genes and gene combinations for their ability to further increase the efficiency of cardiomyocyte differentiation beyond that achieved by transgenic GATA4 alone. Non-integrative delivery of identified gene combinations will aid in the production of differentiated cells for the treatment of ischemic cardiomyopathy.
{"title":"Constitutive Expression of GATA4 Dramatically Increases the Cardiogenic Potential of D3 Mouse Embryonic Stem Cells.","authors":"Lillian L Laemmle, Justus B Cohen, Joseph C Glorioso","doi":"10.2174/1874070701610010248","DOIUrl":"https://doi.org/10.2174/1874070701610010248","url":null,"abstract":"<p><p>The transcription factor GATA binding protein 4 (GATA4) is a vital regulator of cardiac programming that acts by inducing the expression of many different genes involved in cardiomyogenesis. Here we generated a D3 mouse embryonic stem cell line that constitutively expresses high levels of GATA4 and show that these cells have dramatically increased cardiogenic potential compared to an eGFP-expressing control cell line. Embryoid bodies (EB) derived from the D3-GATA4 line displayed increased levels of cardiac gene expression and showed more abundant cardiomyocyte differentiation than control eGFP EB. These cells and two additional lines expressing lower levels of GATA4 provide a platform to screen previously untested cardiac genes and gene combinations for their ability to further increase the efficiency of cardiomyocyte differentiation beyond that achieved by transgenic GATA4 alone. Non-integrative delivery of identified gene combinations will aid in the production of differentiated cells for the treatment of ischemic cardiomyopathy.</p>","PeriodicalId":39120,"journal":{"name":"Open Biotechnology Journal","volume":"10 ","pages":"248-257"},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/72/56/nihms800739.PMC4948750.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34591073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-12-23DOI: 10.2174/1874070701105010039
Bradley Neddenriep, Anastasia Calciano, Daniel Conti, Erin Sauve, Marissa Paterson, Edward Bruno, David A Moffet
The misfolding and aggregation of proteins into amyloid has been linked to a variety of age-related diseases. Aggregation of proteins, such as Aβ in Alzheimer's disease and Islet Amyloid Polypeptide (IAPP, amylin) in type 2 diabetes, appears to lead to the formation of toxic assemblies. These assemblies range in size from small oligomers (2-8 proteins) to large fibrils (thousands of proteins). It remains unclear how these amyloidogenic proteins misfold and form toxic species, but growing evidence suggests that inhibiting the aggregation of these proteins could slow, if not prevent altogether, the progression of these diseases. We describe the use of small peptides (<43 amino acids) as inhibitors of amyloid-based aggregation. These peptides, often short complementary segments of the amyloid proteins, can be useful (i) for identifying the aggregation-prone regions of the amyloid proteins (ii) as models for drug discovery and (iii) as potential therapeutic agents themselves.
{"title":"Short Peptides as Inhibitors of Amyloid Aggregation.","authors":"Bradley Neddenriep, Anastasia Calciano, Daniel Conti, Erin Sauve, Marissa Paterson, Edward Bruno, David A Moffet","doi":"10.2174/1874070701105010039","DOIUrl":"https://doi.org/10.2174/1874070701105010039","url":null,"abstract":"<p><p>The misfolding and aggregation of proteins into amyloid has been linked to a variety of age-related diseases. Aggregation of proteins, such as Aβ in Alzheimer's disease and Islet Amyloid Polypeptide (IAPP, amylin) in type 2 diabetes, appears to lead to the formation of toxic assemblies. These assemblies range in size from small oligomers (2-8 proteins) to large fibrils (thousands of proteins). It remains unclear how these amyloidogenic proteins misfold and form toxic species, but growing evidence suggests that inhibiting the aggregation of these proteins could slow, if not prevent altogether, the progression of these diseases. We describe the use of small peptides (<43 amino acids) as inhibitors of amyloid-based aggregation. These peptides, often short complementary segments of the amyloid proteins, can be useful (i) for identifying the aggregation-prone regions of the amyloid proteins (ii) as models for drug discovery and (iii) as potential therapeutic agents themselves.</p>","PeriodicalId":39120,"journal":{"name":"Open Biotechnology Journal","volume":"5 ","pages":"39-46"},"PeriodicalIF":0.0,"publicationDate":"2011-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2174/1874070701105010039","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32195292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2008-01-01DOI: 10.2174/1874070700802010087
M M Condron, B H Monien, G Bitan
Some biotechnological inventions involve expensive, sophisticated machines. Others are relatively simple innovations that nevertheless address, and solve difficult problems. Synthesis and purification of highly hydrophobic peptides can be a difficult and challenging task, particularly when these peptides have low solubility in both aqueous and organic solvents. Here we describe the synthesis and purification of a series of peptides derived from the hydrophobic C-terminus of the 42-residue form of amyloid β-protein (Aβ42), a peptide believed to be the primary cause for Alzheimer's disease (AD). The series of C-terminal fragments (CTFs) had the general formula Aβ(x-42), x=28-39, which potentially can be used as inhibitors of Aβ42 assembly and neurotoxicity. Synthesis and purification of peptides containing 8-residues or less were straightforward. However, HPLC purification of longer peptides was problematic and provided <1% yield in particularly difficult cases due to very poor solubility in the solvent systems used both in reverse- and in normal phase chromatography. Modification of the purification protocol using water precipitation followed by removal of scavengers by washing with diethyl ether circumvented the need for HPLC purification and provided these peptides with purity as high as HPLC-purified peptides and substantially increased yield.
{"title":"Synthesis and Purification of Highly Hydrophobic Peptides Derived from the C-Terminus of Amyloid β-Protein.","authors":"M M Condron, B H Monien, G Bitan","doi":"10.2174/1874070700802010087","DOIUrl":"https://doi.org/10.2174/1874070700802010087","url":null,"abstract":"<p><p>Some biotechnological inventions involve expensive, sophisticated machines. Others are relatively simple innovations that nevertheless address, and solve difficult problems. Synthesis and purification of highly hydrophobic peptides can be a difficult and challenging task, particularly when these peptides have low solubility in both aqueous and organic solvents. Here we describe the synthesis and purification of a series of peptides derived from the hydrophobic C-terminus of the 42-residue form of amyloid β-protein (Aβ42), a peptide believed to be the primary cause for Alzheimer's disease (AD). The series of C-terminal fragments (CTFs) had the general formula Aβ(x-42), x=28-39, which potentially can be used as inhibitors of Aβ42 assembly and neurotoxicity. Synthesis and purification of peptides containing 8-residues or less were straightforward. However, HPLC purification of longer peptides was problematic and provided <1% yield in particularly difficult cases due to very poor solubility in the solvent systems used both in reverse- and in normal phase chromatography. Modification of the purification protocol using water precipitation followed by removal of scavengers by washing with diethyl ether circumvented the need for HPLC purification and provided these peptides with purity as high as HPLC-purified peptides and substantially increased yield.</p>","PeriodicalId":39120,"journal":{"name":"Open Biotechnology Journal","volume":"2 1","pages":"87-93"},"PeriodicalIF":0.0,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2773559/pdf/nihms73261.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28496281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}