Background: Identifying biomarkers to enrich prognostication and risk predictions in individuals at high risk of developing psychosis will enable stratified early intervention efforts. Brain-derived neurotrophic factor has been widely studied in schizophrenia and in first-episode psychosis with promising results. The aim of this study was to examine the levels of serum brain-derived neurotrophic factor between healthy controls and individuals with ultra-high risk of psychosis.
Methods: A sample of 106 healthy controls and 105 ultra-high risk of psychosis individuals from the Longitudinal Youth at Risk Study was included in this study. Ultra-high risk of psychosis status was determined using the Comprehensive Assessment of At-Risk Mental State at recruitment. Calgary Depression Scale for Schizophrenia was used to assess the severity of depression. All participants were followed up for 2 years, and ultra-high risk of psychosis remitters were defined by ultra-high risk of psychosis individuals who no longer fulfilled Comprehensive Assessment of At-Risk Mental State criteria at the end of the study period. Levels of brain-derived neurotrophic factor were measured in the serum by enzyme-linked immunosorbent assay method.
Results: The ultra-high risk of psychosis group had significantly higher baseline levels of serum brain-derived neurotrophic factor compared with the control group (3.7 vs 3.3 ng/mL, P=.018). However, baseline levels of serum brain-derived neurotrophic factor did not predict the development of psychosis (OR=0.64, CI=0.40-1.02) or remission (OR=0.83, CI=0.60-1.15) from ultra-high risk of psychosis status.
Conclusion: Findings from our study did not support a role for serum brain-derived neurotrophic factor in predicting outcomes in ultra-high risk of psychosis individuals. However, the finding of higher levels of serum brain-derived neurotrophic factor in ultra-high risk of psychosis individuals deserves further study.
Background: Nasal pretreatment with the neuropeptide oxytocin has been reported to prevent stress-induced impairments in hippocampal synaptic plasticity and spatial memory in rats. However, no study has asked if oxytocin application following a stress experience is effective in rescuing stress-induced impairments.
Methods: Synaptic plasticity was measured in hippocampal Schaffer collateral-CA1 synapses of rats subjected to uncontrollable stress; their cognitive function was examined using an object recognition task.
Results: Impaired induction of long-lasting, long-term potentiation by uncontrollable stress was rescued, as demonstrated both in rats and hippocampal slices. Intranasal oxytocin after experiencing uncontrollable stress blocked cognitive impairments in stressed rats and in stressed hippocampal slices treated with a perfused bath solution containing oxytocin.
Conclusions: These results indicated that posttreatment with oxytocin after experiencing a stressful event can keep synaptic plasticity and cognition function intact, indicating the therapeutic potential of oxytocin for stress-related disorders, including posttraumatic stress disorder.
Background: Major depressive disorder is characterized by structural and functional abnormalities of cortical and limbic brain areas, including a decrease in spine synapse number in the dentate gyrus of the hippocampus. Recent studies highlighted that both genetic and pharmacological invalidation of the purinergic P2X7 receptor (P2rx7) leads to antidepressant-like phenotype in animal experiments; however, the impact of P2rx7 on depression-related structural changes in the hippocampus is not clarified yet.
Methods: Effects of genetic deletion of P2rx7s on depressive-like behavior and spine synapse density in the dentate gyrus were investigated using the learned helplessness mouse model of depression.
Results: We demonstrate that in wild-type animals, inescapable footshocks lead to learned helplessness behavior reflected in increased latency and number of escape failures to subsequent escapable footshocks. This behavior is accompanied with downregulation of mRNA encoding P2rx7 and decrease of spine synapse density in the dentate gyrus as determined by electron microscopic stereology. In addition, a decrease in synaptopodin but not in PSD95 and NR2B/GluN2B protein level was also observed under these conditions. Whereas the absence of P2rx7 was characterized by escape deficit, no learned helpless behavior is observed in these animals. Likewise, no decrease in spine synapse number and synaptopodin protein levels was detected in response to inescapable footshocks in P2rx7-deficient animals.
Conclusion: Our findings suggest the endogenous activation of P2rx7s in the learned helplessness model of depression and decreased plasticity of spine synapses in P2rx7-deficient mice might explain the resistance of these animals to repeated stressful stimuli.
Psychiatric research has been hampered by an explanatory gap between psychiatric symptoms and their neural underpinnings, which has resulted in poor treatment outcomes. This situation has prompted us to shift from symptom-based diagnosis to data-driven diagnosis, aiming to redefine psychiatric disorders as disorders of neural circuitry. Promising candidates for data-driven diagnosis include resting-state functional connectivity MRI (rs-fcMRI)-based biomarkers. Although biomarkers have been developed with the aim of diagnosing patients and predicting the efficacy of therapy, the focus has shifted to the identification of biomarkers that represent therapeutic targets, which would allow for more personalized treatment approaches. This type of biomarker (i.e., "theranostic biomarker") is expected to elucidate the disease mechanism of psychiatric conditions and to offer an individualized neural circuit-based therapeutic target based on the neural cause of a condition. To this end, researchers have developed rs-fcMRI-based biomarkers and investigated a causal relationship between potential biomarkers and disease-specific behavior using functional MRI (fMRI)-based neurofeedback on functional connectivity. In this review, we introduce a recent approach for creating a theranostic biomarker, which consists mainly of 2 parts: (1) developing an rs-fcMRI-based biomarker that can predict diagnosis and/or symptoms with high accuracy, and (2) the introduction of a proof-of-concept study investigating the relationship between normalizing the biomarker and symptom changes using fMRI-based neurofeedback. In parallel with the introduction of recent studies, we review rs-fcMRI-based biomarker and fMRI-based neurofeedback, focusing on the technological improvements and limitations associated with clinical use.
Background: Oxytocin may be a possible treatment for multiple neuropsychiatric disorders, including cocaine addiction. Little is known about the site-specific effects of oxytocin on various drug addiction-related brain regions. Furthermore, sexually dimorphic effects of oxytocin on neural function in the addiction circuit have not been established. Here, we studied Fos expression following cocaine-cued reinstatement in both male and female rats.
Methods: Male and female rats underwent self-administration, extinction, and reinstatement tests. On test days, rats were given oxytocin or vehicle, and lever pressing was measured in response to conditioned cocaine cues. Rats were perfused and Fos staining measured in the central amygdala, medial prefrontal cortex, nucleus accumbens core, and subthalamic nucleus. Fos/oxytocin double labeling occurred in the paraventricular nucleus of the hypothalamus.
Results: Rats reinstated to cocaine cues relative to extinction responding and oxytocin reduced cocaine seeking. Oxytocin combined with contingent cue presentations increased Fos+ oxytocin cell bodies within the paraventricular nucleus of the hypothalamus relative to vehicle. Fos expression robustly increased in the central amygdala following oxytocin administration. Oxytocin reversed cue-induced Fos expression in the medial prefrontal cortex, nucleus accumbens core, and subthalamic nucleus. Central oxytocin infusion also attenuated reinstated cocaine seeking.
Conclusions: Oxytocin decreased reinstated cocaine seeking, increased Fos activation in the paraventricular nucleus of the hypothalamus and central amygdala, but normalized cue-induced Fos activation in the medial prefrontal cortex, nucleus accumbens core, and subthalamic nucleus, thereby demonstrating regionally specific activation patterns. No sex differences were seen for the effects of oxytocin on cocaine seeking and Fos activation, indicating that oxytocin acts on similar central neural circuits critical to reinstated cocaine seeking in both males and females.
Drug addiction has often been described as a "hijacking" of the brain circuits involved in learning and memory. Glutamate is the principal excitatory neurotransmitter in the brain, and its contribution to synaptic plasticity and learning processes is well established in animal models. Likewise, over the past 20 years the addiction field has ascribed a critical role for glutamatergic transmission in the development of addiction. Chronic drug use produces enduring neuroadaptations in corticostriatal projections that are believed to contribute to a maladaptive deficit in inhibitory control over behavior. Much of this research focuses on the role played by ionotropic glutamate receptors directly involved in long-term potentiation and depression or metabotropic receptors indirectly modulating synaptic plasticity. Importantly, the balance between glutamate release and clearance tightly regulates the patterned activation of these glutamate receptors, emphasizing an important role for glutamate transporters in maintaining extracellular glutamate levels. Five excitatory amino acid transporters participate in active glutamate reuptake. Recent evidence suggests that these glutamate transporters can be modulated by chronic drug use at a variety of levels. In this review, we synopsize the evidence and mechanisms associated with drug-induced dysregulation of glutamate transport. We then summarize the preclinical and clinical data suggesting that glutamate transporters offer an effective target for the treatment of drug addiction. In particular, we focus on the role that altered glutamate transporters have in causing drug cues and contexts to develop an intrusive quality that guides maladaptive drug seeking behaviors.
Background: Numerous studies have reported associations between the brain-derived neurotrophic factor (BDNF) gene and psychiatric disorders, including suicidal behavior, although with conflicting results.
Methods: A total of 250 major depressive disorder patients were collected in the context of a European multicenter resistant depression study and treated with antidepressants at adequate doses for at least 4 weeks. Suicidality was assessed using the Mini International Neuropsychiatric Interview and Hamilton Rating Scale for Depression, and treatment response using the HAM-D. Genotyping was performed for the functional Val66Met polymorphism (rs6265) and 7 additional tagging single nucleotide polymorphisms within the BDNF gene.
Results: Neither BDNF single markers nor haplotypes were found to be associated with suicide risk and lifetime history of suicide attempts. Gender-specific analyses revealed nonsignificant single marker (rs908867) and haplotypic association with suicide risk in males after multiple testing correction. Analyzing treatment response phenotypes, the functional Val66Met polymorphism as well as rs10501087 showed significant genotypic and haplotypic association with suicide risk in remitters (n=34, 13.6%).
Conclusions: Considering the sample size, the present findings need to be replicated in larger samples to confirm or refute a role of BDNF in the investigated suicidal behavior phenotypes.
Background: Stress constitutes a risk factor across several psychiatric disorders. Moreover, females are more susceptible to stress-related disorders, such as depression, than males. Although dopamine system underactivation is implicated in the pathophysiology of depression, little is known about the female dopamine system at baseline and post-stress.
Methods: The effects of chronic mild stress were examined on ventral tegmental area dopamine neuron activity and forced swim test immobility by comparing male and female rats. The impact of a single dose of the rapid antidepressant ketamine (10 mg/kg, i.p.) on forced swim test immobility and ventral tegmental area function was then tested.
Results: Baseline ventral tegmental area dopamine activity was comparable in both sexes. At baseline, females exhibited roughly double the forced swim test immobility duration than males, which corresponded to ~50% decrease in ventral tegmental area dopamine population activity compared with similarly treated (i.e., post-forced swim test) males. Following chronic mild stress, there was greater immobility duration in both sexes and reduced ventral tegmental area dopamine neuron activity by approximately 50% in males and nearly 75% in females. Ketamine restored behavior and post-forced swim test ventral tegmental area dopamine activity for up to 7 days in females as well as in both male and female chronic mild stress-exposed rats.
Conclusions: These data suggest increased female susceptibility to depression-like phenotypes (i.e., greater immobility, ventral tegmental area hypofunction) is associated with higher dopamine system sensitivity to both acute and repeated stress relative to males. Understanding the neural underpinnings of sex differences in stress vulnerability will provide insight into mechanisms of disease and optimizing therapeutic approaches in both sexes.
Background: To determine brain areas involved in the antidepressant-related behavioral effects of the selective neuronal nitric oxide synthase inhibitor 1-(2-Trifluoro-methyl-phenyl) imidazole (TRIM) and experimental test compound 4-((3,5-dichloro-2-hydroxybenzyl)amino)-2-hydroxybenzoic acid (ZL006), an inhibitor of the PSD of 95 kDa/neuronal nitric oxide synthase interaction in the N-methyl-D-aspartic acid receptor signalling pathway, regional specific expression of the neuronal activation marker c-FOS was assessed following exposure to the forced swimming test in the Wistar Kyoto rat.
Methods: Wistar Kyoto rats were subjected to a 15-minute swim pretest (pre-forced swimming test) period on day 1. At 24, 5, and 1 hour prior to the 5-minute test, which took place 24 hours following the pre-forced swimming test, animals were treated with TRIM (50 mg/kg; i.p.), ZL006 (10 mg/kg; i.p.), or saline vehicle (1 mL/kg i.p). Behavior was recorded during both pretest and test periods.
Results: Both TRIM and ZL006 decreased immobility time in Wistar Kyoto rats in the forced swimming test. Exposure to the forced swimming test increased c-FOS immunoreactivity in the lateral septum, paraventricular nucleus of the hypothalamus, periaqueductal grey, dentate gyrus, and ventral CA1 of the hippocampus compared with non-forced swimming test-exposed controls. Forced swimming test-induced c-FOS immunoreactivity was further increased in the lateral septum, periaqueductal gray, and paraventricular nucleus of the hypothalamus following treatment with TRIM or ZL006. By contrast, forced swimming test-induced c-FOS immunoreactivity was reduced in dorsal dentate gyrus and ventral CA1 following treatment with TRIM or ZL006. Exposure to the forced swimming test resulted in an increase in NADPH diaphorase staining in the paraventricular nucleus of the hypothalamus. This forced swimming test-induced increase was attenuated following treatment with ZL006 and points to the paraventricular nucleus as a brain region where ZL006 acts to attenuate forced swimming test-induced neuronal nitric oxide synthase activity while concomitantly regulating region specific neuronal activation associated with an antidepressant-related response.
Conclusions: This study identified a pattern of enhanced and reduced forced swimming test-related c-FOS immunoreactivity indicative of a regulated network where inhibition of nitric oxide coupled to the N-methyl-D-aspartic acid receptor leads to activation of the lateral septum, periaqueductal gray, and paraventricular nucleus of the hypothalamus with concomitant inhibition of the hippocampus.

