Handling occlusions is still a challenging problem for image composition. It always requires the source contents to be completely in front of the target contents or needs manual interventions to adjust occlusions, which is very tedious. Though several methods have suggested exploiting priors or learning techniques for promoting occlusion determination, their potentials are much limited. This paper addresses the challenge by presenting a depth registration method for merging the source contents seamlessly into the 3D space that the target image represents. Thus, the occlusions between the source contents and target contents can be conveniently handled through pixel-wise depth comparisons, allowing the user to more efficiently focus on the designs for image composition. Experimental results show that we can conveniently handle occlusions in image composition and improve efficiency by about 4 times compared to Photoshop.
{"title":"Image Composition with Depth Registration","authors":"Zan Li, Wencheng Wang, Fei Hou","doi":"10.24963/ijcai.2023/126","DOIUrl":"https://doi.org/10.24963/ijcai.2023/126","url":null,"abstract":"Handling occlusions is still a challenging problem for image composition. It always requires the source contents to be completely in front of the target contents or needs manual interventions to adjust occlusions, which is very tedious. Though several methods have suggested exploiting priors or learning techniques for promoting occlusion determination, their potentials are much limited. This paper addresses the challenge by presenting a depth registration method for merging the source contents seamlessly into the 3D space that the target image represents. Thus, the occlusions between the source contents and target contents can be conveniently handled through pixel-wise depth comparisons, allowing the user to more efficiently focus on the designs for image composition. Experimental results show that we can conveniently handle occlusions in image composition and improve efficiency by about 4 times compared to Photoshop.","PeriodicalId":394530,"journal":{"name":"International Joint Conference on Artificial Intelligence","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129309397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Weakly supervised semantic segmentation (WSSS) with image-level annotations has achieved great processes through class activation map (CAM). Since vanilla CAMs are hardly served as guidance to bridge the gap between full and weak supervision, recent studies explore semantic representations to make CAM fit for WSSS and demonstrate encouraging results. However, they generally exploit single-level semantics, which may hamper the model to learn a comprehensive semantic structure. Motivated by the prior that each image has multiple levels of semantics, we propose hierarchical semantic contrast (HSC) to ameliorate the above problem. It conducts semantic contrast from coarse-grained to fine-grained perspective, including ROI level, class level, and pixel level, making the model learn a better object pattern understanding. To further improve CAM quality, building upon HSC, we explore consistency regularization of cross supervision and develop momentum prototype learning to utilize abundant semantics across different images. Extensive studies manifest that our plug-and-play learning paradigm, HSC, can significantly boost CAM quality on both non-saliency-guided and saliency-guided baselines, and establish new state-of-the-art WSSS performance on PASCAL VOC 2012 dataset. Code is available at https://github.com/Wu0409/HSC_WSSS.
{"title":"Hierarchical Semantic Contrast for Weakly Supervised Semantic Segmentation","authors":"Yuanchen Wu, Xiaoqiang Li, Songmin Dai, Jide Li, Tong Liu, Shaorong Xie","doi":"10.24963/ijcai.2023/171","DOIUrl":"https://doi.org/10.24963/ijcai.2023/171","url":null,"abstract":"Weakly supervised semantic segmentation (WSSS) with image-level annotations has achieved great processes through class activation map (CAM). Since vanilla CAMs are hardly served as guidance to bridge the gap between full and weak supervision, recent studies explore semantic representations to make CAM fit for WSSS and demonstrate encouraging results. However, they generally exploit single-level semantics, which may hamper the model to learn a comprehensive semantic structure. Motivated by the prior that each image has multiple levels of semantics, we propose hierarchical semantic contrast (HSC) to ameliorate the above problem. It conducts semantic contrast from coarse-grained to fine-grained perspective, including ROI level, class level, and pixel level, making the model learn a better object pattern understanding. To further improve CAM quality, building upon HSC, we explore consistency regularization of cross supervision and develop momentum prototype learning to utilize abundant semantics across different images. Extensive studies manifest that our plug-and-play learning paradigm, HSC, can significantly boost CAM quality on both non-saliency-guided and saliency-guided baselines, and establish new state-of-the-art WSSS performance on PASCAL VOC 2012 dataset. Code is available at https://github.com/Wu0409/HSC_WSSS.","PeriodicalId":394530,"journal":{"name":"International Joint Conference on Artificial Intelligence","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129358755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Ghilardi, Alessandro Gianola, M. Montali, Andrey Rivkin
Modeling and verification of dynamic systems operating over a relational representation of states are increasingly investigated problems in AI, Business Process Management and Database Theory. To make these systems amenable to verification, the amount of information stored in each state needs to be bounded, or restrictions are imposed on the preconditions and effects of actions. We lift these restrictions by introducing the framework of Relational Action Bases (RABs), which generalizes existing frameworks and in which unbounded relational states are evolved through actions that can (1) quantify both existentially and universally over the data, and (2) use arithmetic constraints. We then study parameterized safety of RABs via (approximated) SMT-based backward search, singling out essential meta-properties of the resulting procedure, and showing how it can be realized by an off-the-shelf combination of existing verification modules of the state-of-the-art MCMT model checker. We demonstrate the effectiveness of this approach on a benchmark of data-aware business processes. Finally, we show how universal invariants can be exploited to make this procedure fully correct.
{"title":"Safety Verification and Universal Invariants for Relational Action Bases","authors":"S. Ghilardi, Alessandro Gianola, M. Montali, Andrey Rivkin","doi":"10.24963/ijcai.2023/362","DOIUrl":"https://doi.org/10.24963/ijcai.2023/362","url":null,"abstract":"Modeling and verification of dynamic systems operating over a relational representation of states are increasingly investigated problems in AI, Business Process Management and Database Theory. To make these systems amenable to verification, the amount of information stored in each state needs to be bounded, or restrictions are imposed on the preconditions and effects of actions. We lift these restrictions by introducing the framework of Relational Action Bases (RABs), which generalizes existing frameworks and in which unbounded relational states are evolved through actions that can (1) quantify both existentially and universally over the data, and (2) use arithmetic constraints. We then study parameterized safety of RABs via (approximated) SMT-based backward search, singling out essential meta-properties of the resulting procedure, and showing how it can be realized by an off-the-shelf combination of existing verification modules of the state-of-the-art MCMT model checker. We demonstrate the effectiveness of this approach on a benchmark of data-aware business processes. Finally, we show how universal invariants can be exploited to make this procedure fully correct.","PeriodicalId":394530,"journal":{"name":"International Joint Conference on Artificial Intelligence","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129451444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Deep neural networks (DNNs) have gained huge attention over the last several years due to their promising results in various tasks. However, due to their large model size and over-parameterization, they are recognized as being computationally demanding. Therefore, deep learning models are not well-suited to applications with limited computational resources and battery life. Current solutions to reduce computation costs mainly focus on inference efficiency while being resource-intensive during training. This Ph.D. research aims to address these challenges by developing cost-effective neural networks that can achieve decent performance on various complex tasks using minimum computational resources during training and inference of the network.
{"title":"Cost-effective Artificial Neural Networks","authors":"Zahra Atashgahi","doi":"10.24963/ijcai.2023/810","DOIUrl":"https://doi.org/10.24963/ijcai.2023/810","url":null,"abstract":"Deep neural networks (DNNs) have gained huge attention over the last several years due to their promising results in various tasks. However, due to their large model size and over-parameterization, they are recognized as being computationally demanding. Therefore, deep learning models are not well-suited to applications with limited computational resources and battery life. Current solutions to reduce computation costs mainly focus on inference efficiency while being resource-intensive during training. This Ph.D. research aims to address these challenges by developing cost-effective neural networks that can achieve decent performance on various complex tasks using minimum computational resources during training and inference of the network.","PeriodicalId":394530,"journal":{"name":"International Joint Conference on Artificial Intelligence","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130357548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The robustness of graph classification models plays an essential role in providing highly reliable applications. Previous studies along this line primarily focus on seeking the stability of the model in terms of overall data metrics (e.g., accuracy) when facing data perturbations, such as removing edges. Empirically, we find that these graph classification models also suffer from semantic bias and confidence collapse issues, which substantially hinder their applicability in real-world scenarios. To address these issues, we present MGRL, a multi-view representation learning model for graph classification tasks that achieves robust results. Firstly, we proposes an instance-view consistency representation learning method, which utilizes multi-granularity contrastive learning technique to perform semantic constraints on instance representations at both the node and graph levels, thus alleviating the semantic bias issue. Secondly, we proposes a class-view discriminative representation learning method, which employs the prototype-driven class distance optimization technique to adjust intra- and inter-class distances, thereby mitigating the confidence collapse issue.Finally, extensive experiments and visualizations on eight benchmark dataset demonstrate the effectiveness of MGRL.
{"title":"Multi-View Robust Graph Representation Learning for Graph Classification","authors":"Guanghui Ma, Chunming Hu, Ling Ge, Hong Zhang","doi":"10.24963/ijcai.2023/449","DOIUrl":"https://doi.org/10.24963/ijcai.2023/449","url":null,"abstract":"The robustness of graph classification models plays an essential role in providing highly reliable applications. Previous studies along this line primarily focus on seeking the stability of the model in terms of overall data metrics (e.g., accuracy) when facing data perturbations, such as removing edges. Empirically, we find that these graph classification models also suffer from semantic bias and confidence collapse issues, which substantially hinder their applicability in real-world scenarios. To address these issues, we present MGRL, a multi-view representation learning model for graph classification tasks that achieves robust results. Firstly, we proposes an instance-view consistency representation learning method, which utilizes multi-granularity contrastive learning technique to perform semantic constraints on instance representations at both the node and graph levels, thus alleviating the semantic bias issue. Secondly, we proposes a class-view discriminative representation learning method, which employs the prototype-driven class distance optimization technique to adjust intra- and inter-class distances, thereby mitigating the confidence collapse issue.Finally, extensive experiments and visualizations on eight benchmark dataset demonstrate the effectiveness of MGRL.","PeriodicalId":394530,"journal":{"name":"International Joint Conference on Artificial Intelligence","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130520297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Constraint acquisition is the task of learning a constraint network from examples of solutions and non-solutions. Existing constraint acquisition systems typically require advance knowledge of the target network's constraint language, which significantly narrows their scope of applicability. In this paper we propose a constraint acquisition method that computes a suitable constraint language as part of the learning process, eliminating the need for any advance knowledge. We report preliminary experiments on various acquisition benchmarks.
{"title":"Learning Constraint Networks over Unknown Constraint Languages","authors":"C. Bessiere, Clément Carbonnel, Areski Himeur","doi":"10.24963/ijcai.2023/208","DOIUrl":"https://doi.org/10.24963/ijcai.2023/208","url":null,"abstract":"Constraint acquisition is the task of learning a constraint network from examples of solutions and non-solutions. Existing constraint acquisition systems typically require advance knowledge of the target network's constraint language, which significantly narrows their scope of applicability. In this paper we propose a constraint acquisition method that computes a suitable constraint language as part of the learning process, eliminating the need for any advance knowledge. We report preliminary experiments on various acquisition benchmarks.","PeriodicalId":394530,"journal":{"name":"International Joint Conference on Artificial Intelligence","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126976121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Canzhe Zhao, Yanjie Ze, Jing Dong, Baoxiang Wang, Shuai Li
Communication lays the foundation for cooperation in human society and in multi-agent reinforcement learning (MARL). Humans also desire to maintain their privacy when communicating with others, yet such privacy concern has not been considered in existing works in MARL. We propose the differentially private multi-agent communication (DPMAC) algorithm, which protects the sensitive information of individual agents by equipping each agent with a local message sender with rigorous (epsilon, delta)-differential privacy (DP) guarantee. In contrast to directly perturbing the messages with predefined DP noise as commonly done in privacy-preserving scenarios, we adopt a stochastic message sender for each agent respectively and incorporate the DP requirement into the sender, which automatically adjusts the learned message distribution to alleviate the instability caused by DP noise. Further, we prove the existence of a Nash equilibrium in cooperative MARL with privacy-preserving communication, which suggests that this problem is game-theoretically learnable. Extensive experiments demonstrate a clear advantage of DPMAC over baseline methods in privacy-preserving scenarios.
{"title":"DPMAC: Differentially Private Communication for Cooperative Multi-Agent Reinforcement Learning","authors":"Canzhe Zhao, Yanjie Ze, Jing Dong, Baoxiang Wang, Shuai Li","doi":"10.24963/ijcai.2023/516","DOIUrl":"https://doi.org/10.24963/ijcai.2023/516","url":null,"abstract":"Communication lays the foundation for cooperation in human society and in multi-agent reinforcement learning (MARL). Humans also desire to maintain their privacy when communicating with others, yet such privacy concern has not been considered in existing works in MARL. We propose the differentially private multi-agent communication (DPMAC) algorithm, which protects the sensitive information of individual agents by equipping each agent with a local message sender with rigorous (epsilon, delta)-differential privacy (DP) guarantee. In contrast to directly perturbing the messages with predefined DP noise as commonly done in privacy-preserving scenarios, we adopt a stochastic message sender for each agent respectively and incorporate the DP requirement into the sender, which automatically adjusts the learned message distribution to alleviate the instability caused by DP noise. Further, we prove the existence of a Nash equilibrium in cooperative MARL with privacy-preserving communication, which suggests that this problem is game-theoretically learnable. Extensive experiments demonstrate a clear advantage of DPMAC over baseline methods in privacy-preserving scenarios.","PeriodicalId":394530,"journal":{"name":"International Joint Conference on Artificial Intelligence","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129181514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Auction-based Federated Learning (AFL) enables open collaboration among self-interested data consumers and data owners. Existing AFL approaches cannot manage the mutual influence among multiple data consumers competing to enlist data owners. Moreover, they cannot support a single data owner to join multiple data consumers simultaneously. To bridge these gaps, we propose the Multi-Agent Reinforcement Learning for AFL (MARL-AFL) approach to steer data consumers to bid strategically towards an equilibrium with desirable overall system characteristics. We design a temperature-based reward reassignment scheme to make tradeoffs between cooperation and competition among AFL data consumers. In this way, it can reach an equilibrium state that ensures individual data consumers can achieve good utility, while preserving system-level social welfare. To circumvent potential collusion behaviors among data consumers, we introduce a bar agent to set a personalized bidding lower bound for each data consumer. Extensive experiments on six commonly adopted benchmark datasets show that MARL-AFL is significantly more advantageous compared to six state-of-the-art approaches, outperforming the best by 12.2%, 1.9% and 3.4% in terms of social welfare, revenue and accuracy, respectively.
{"title":"Competitive-Cooperative Multi-Agent Reinforcement Learning for Auction-based Federated Learning","authors":"Xiaoli Tang, Han Yu","doi":"10.24963/ijcai.2023/474","DOIUrl":"https://doi.org/10.24963/ijcai.2023/474","url":null,"abstract":"Auction-based Federated Learning (AFL) enables open collaboration among self-interested data consumers and data owners. Existing AFL approaches cannot manage the mutual influence among multiple data consumers competing to enlist data owners. Moreover, they cannot support a single data owner to join multiple data consumers simultaneously. To bridge these gaps, we propose the Multi-Agent Reinforcement Learning for AFL (MARL-AFL) approach to steer data consumers to bid strategically\u0000\u0000towards an equilibrium with desirable overall system characteristics. We design a temperature-based reward reassignment scheme to make tradeoffs between cooperation and competition among AFL data consumers. In this way, it can reach an equilibrium state that ensures individual data consumers can achieve good utility, while preserving system-level social welfare. To circumvent potential collusion behaviors among data consumers, we introduce a bar agent to set a personalized bidding\u0000\u0000lower bound for each data consumer. Extensive experiments on six commonly adopted benchmark datasets show that MARL-AFL is significantly more advantageous compared to six state-of-the-art approaches, outperforming the best by 12.2%, 1.9% and 3.4% in terms of social welfare, revenue and accuracy, respectively.","PeriodicalId":394530,"journal":{"name":"International Joint Conference on Artificial Intelligence","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123331527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fair allocation of indivisible goods is a central topic in many AI applications. Unfortunately, the corresponding problems are known to be NP-hard for many fairness concepts, so unless P = NP, exact polynomial-time algorithms cannot exist for them. In practical applications, however, it would be highly desirable to find exact solutions as quickly as possible. This motivates the study of algorithms that—even though they only run in exponential time—are as fast as possible and exactly solve such problems. We present known complexity results for them and give a survey of important techniques for designing such algorithms, mainly focusing on four common fairness notions: max-min fairness, maximin share, maximizing Nash social welfare, and envy-freeness. We also highlight the most challenging open problems for future work.
{"title":"Complexity Results and Exact Algorithms for Fair Division of Indivisible Items: A Survey","authors":"T. Nguyen, J. Rothe","doi":"10.24963/ijcai.2023/754","DOIUrl":"https://doi.org/10.24963/ijcai.2023/754","url":null,"abstract":"Fair allocation of indivisible goods is a central topic in many AI applications. Unfortunately, the corresponding problems are known to be NP-hard for many fairness concepts, so unless P = NP, exact polynomial-time algorithms cannot exist for them. In practical applications, however, it would be highly desirable to find exact solutions as quickly as possible. This motivates the study of algorithms that—even though they only run in exponential time—are as fast as possible and exactly solve such problems. We present known complexity results for them and give a survey of important techniques for designing such algorithms, mainly focusing on four common fairness notions: max-min fairness, maximin share, maximizing Nash social welfare, and envy-freeness. We also highlight the most challenging open problems for future work.","PeriodicalId":394530,"journal":{"name":"International Joint Conference on Artificial Intelligence","volume":"41 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123478384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sowmith Nandan Rachuri, Arpitha Malavalli, Niharika Sri Parasa, Pooja Bassin, S. Srinivasa
There is an increasing demand to design policy interventions to achieve various targets specified by the UN Sustainable Development Goals by 2030. Designing interventions is a complex task given that the system may often respond in unexpected ways to a given intervention. This could be due to interventions towards a given target, affecting other unrelated variables, and/or interventions leading to acute disparities in nearby geographic areas. In order to address such issues, we propose a novel concept called Stress Modeling that analyzes the holistic impact of a policy intervention by taking into account the interactions within a system, after the intervention. The simulation is based on the postulate that complex systems of interacting entities tend to settle down into "low energy'' configurations by minimizing differentials in capabilities of neighbouring entities. The simulation shows how policy impact percolates through geospatial boundaries over time and can be applied at any granularity. The theory and the corresponding package have been explained along with a case study analyzing a fertilizer policy in the Agro-climatic Zones of the state of Karnataka, India.
{"title":"Modeling the Impact of Policy Interventions for Sustainable Development","authors":"Sowmith Nandan Rachuri, Arpitha Malavalli, Niharika Sri Parasa, Pooja Bassin, S. Srinivasa","doi":"10.24963/ijcai.2023/841","DOIUrl":"https://doi.org/10.24963/ijcai.2023/841","url":null,"abstract":"There is an increasing demand to design policy interventions to achieve various targets specified by the UN Sustainable Development Goals by 2030. Designing interventions is a complex task given that the system may often respond in unexpected ways to a given intervention. This could be due to interventions towards a given target, affecting other unrelated variables, and/or interventions leading to acute disparities in nearby geographic areas. In order to address such issues, we propose a novel concept called Stress Modeling that analyzes the holistic impact of a policy intervention by taking into account the interactions within a system, after the intervention. The simulation is based on the postulate that complex systems of interacting entities tend to settle down into \"low energy'' configurations by minimizing differentials in capabilities of neighbouring entities. The simulation shows how policy impact percolates through geospatial boundaries over time and can be applied at any granularity. The theory and the corresponding package have been explained along with a case study analyzing a fertilizer policy in the Agro-climatic Zones of the state of Karnataka, India.","PeriodicalId":394530,"journal":{"name":"International Joint Conference on Artificial Intelligence","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114557626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}