首页 > 最新文献

Behaviormetrika最新文献

英文 中文
Suggestions for combining psychometric-based and supervised classification methods to detect cheating in online exams 结合基于心理测量和监督分类的方法检测在线考试作弊的建议
Q1 Mathematics Pub Date : 2023-12-01 DOI: 10.1007/s41237-023-00216-z
Bilal Baris Alkan, Muhammet Kumartas
{"title":"Suggestions for combining psychometric-based and supervised classification methods to detect cheating in online exams","authors":"Bilal Baris Alkan, Muhammet Kumartas","doi":"10.1007/s41237-023-00216-z","DOIUrl":"https://doi.org/10.1007/s41237-023-00216-z","url":null,"abstract":"","PeriodicalId":39640,"journal":{"name":"Behaviormetrika","volume":"5 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138625442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the monotonicity of the residual heteroscedasticity item response model 论残差异方差项目反应模型的单调性
Q1 Mathematics Pub Date : 2023-11-24 DOI: 10.1007/s41237-023-00212-3
L. Feuerstahler, J. R. Ahn, Xing Chen, Daniel Lorenzi, Jay Plourde
{"title":"On the monotonicity of the residual heteroscedasticity item response model","authors":"L. Feuerstahler, J. R. Ahn, Xing Chen, Daniel Lorenzi, Jay Plourde","doi":"10.1007/s41237-023-00212-3","DOIUrl":"https://doi.org/10.1007/s41237-023-00212-3","url":null,"abstract":"","PeriodicalId":39640,"journal":{"name":"Behaviormetrika","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139242100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Measuring social value orientation by model-based scoring 基于模型的评分法测量社会价值取向
Q1 Mathematics Pub Date : 2023-11-13 DOI: 10.1007/s41237-023-00211-4
Keiko Mizuno, Hiroshi Shimizu
Abstract This study proposes a method of measuring social value orientation using model-based scoring and a task suitable for such scoring. We evaluated this method by means of parameter recovery simulation (Study 1), and we examined its retest reliability (Study 2) and its predictive validity (Study 3). The results indicate that the proposed method has low bias and sufficient predictive validity. While the improvement in predictive validity of altruism was negligible and comparable to previous scoring methods in terms of confidence intervals, the measurement of equality using the proposed model and task combination produced a moderate correlation that was not observed with other methods. Although SVO is a concept used primarily in psychology, the model assumed in this study is mathematically equivalent to a well-known economics model. We, therefore, suggest that this method may lead to cross-disciplinary research.
摘要本研究提出了一种基于模型的社会价值取向评分方法,并提出了一种适合于该评分的任务。我们通过参数恢复模拟(Study 1)对该方法进行了评价,并对其重测信度(Study 2)和预测效度(Study 3)进行了检验。结果表明,该方法具有低偏倚和足够的预测效度。虽然利他主义的预测效度的提高可以忽略不计,并且在置信区间方面可以与以前的评分方法相媲美,但使用所提出的模型和任务组合测量的平等性产生了与其他方法未观察到的适度相关性。虽然SVO是一个主要用于心理学的概念,但本研究中假设的模型在数学上等同于一个众所周知的经济学模型。因此,我们建议这种方法可能会导致跨学科的研究。
{"title":"Measuring social value orientation by model-based scoring","authors":"Keiko Mizuno, Hiroshi Shimizu","doi":"10.1007/s41237-023-00211-4","DOIUrl":"https://doi.org/10.1007/s41237-023-00211-4","url":null,"abstract":"Abstract This study proposes a method of measuring social value orientation using model-based scoring and a task suitable for such scoring. We evaluated this method by means of parameter recovery simulation (Study 1), and we examined its retest reliability (Study 2) and its predictive validity (Study 3). The results indicate that the proposed method has low bias and sufficient predictive validity. While the improvement in predictive validity of altruism was negligible and comparable to previous scoring methods in terms of confidence intervals, the measurement of equality using the proposed model and task combination produced a moderate correlation that was not observed with other methods. Although SVO is a concept used primarily in psychology, the model assumed in this study is mathematically equivalent to a well-known economics model. We, therefore, suggest that this method may lead to cross-disciplinary research.","PeriodicalId":39640,"journal":{"name":"Behaviormetrika","volume":"64 5","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136347309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A higher-order life crafting scale validation using PLS-CCA: the Italian version 使用PLS-CCA的高阶生命制作规模验证:意大利语版本
Q1 Mathematics Pub Date : 2023-10-12 DOI: 10.1007/s41237-023-00209-y
Emanuela Ingusci, Mario Angelelli, Giovanna Alessia Sternativo, Alessia Anna Catalano, Elisa De Carlo, Claudio G. Cortese, Evangelia Demerouti, Enrico Ciavolino
Abstract In this study, we highlight Life Crafting Scale (LCS) factor structure and model specifications by using partial least squares structural equations modelling (PLS-SEM) and confirmatory composite analysis (CCA), with a sample of Italian students ( $$n=953$$ n = 953 ). From the validation results obtained through PLS-CCA, we identify the emergence of both the reflective nature of the scores of the LCS subscale and an alternative measurement model of the LCS scores as a second-order reflective–reflective model.
摘要本研究采用偏最小二乘结构方程模型(PLS-SEM)和验证性复合分析(CCA),以意大利学生($$n=953$$ n = 953)为样本,重点分析了生命制作量表(LCS)的因子结构和模型规格。从PLS-CCA获得的验证结果中,我们发现了LCS子量表得分的反射性质,以及LCS得分的另一种测量模型,即二阶反射-反射模型。
{"title":"A higher-order life crafting scale validation using PLS-CCA: the Italian version","authors":"Emanuela Ingusci, Mario Angelelli, Giovanna Alessia Sternativo, Alessia Anna Catalano, Elisa De Carlo, Claudio G. Cortese, Evangelia Demerouti, Enrico Ciavolino","doi":"10.1007/s41237-023-00209-y","DOIUrl":"https://doi.org/10.1007/s41237-023-00209-y","url":null,"abstract":"Abstract In this study, we highlight Life Crafting Scale (LCS) factor structure and model specifications by using partial least squares structural equations modelling (PLS-SEM) and confirmatory composite analysis (CCA), with a sample of Italian students ( $$n=953$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>=</mml:mo> <mml:mn>953</mml:mn> </mml:mrow> </mml:math> ). From the validation results obtained through PLS-CCA, we identify the emergence of both the reflective nature of the scores of the LCS subscale and an alternative measurement model of the LCS scores as a second-order reflective–reflective model.","PeriodicalId":39640,"journal":{"name":"Behaviormetrika","volume":"58 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136013381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Change point detection in text data 文本数据中的更改点检测
Q1 Mathematics Pub Date : 2023-10-11 DOI: 10.1007/s41237-023-00207-0
Axel Preis, Stefanie Schwaar
Abstract The analysis of text data using artificial intelligence and statistical methods has become increasingly important in recent years. One application is the automatic assignment of documents. For this purpose, a classification model is trained on the basis of historical data. If the structure of the texts to be classified changes over time, the quality of the classification will decrease. Change point detection algorithms can counteract this. Such algorithms automatically detect changes in the structure of the texts and indicate that the trained classification model has to be adapted. However, the undesired influence of the length of the document needs to be handled when modeling the text data. We present a multinomial change-point model detecting changes in text structures. The results are supported by simulation studies.
近年来,使用人工智能和统计方法对文本数据进行分析变得越来越重要。一个应用程序是文档的自动分配。为此,在历史数据的基础上训练分类模型。如果要分类的文本的结构随着时间的推移而改变,分类的质量就会下降。变化点检测算法可以抵消这一点。这种算法自动检测文本结构的变化,并指示训练好的分类模型必须进行调整。但是,在对文本数据建模时,需要处理文档长度的不良影响。我们提出了一个多项变化点模型来检测文本结构的变化。结果得到了仿真研究的支持。
{"title":"Change point detection in text data","authors":"Axel Preis, Stefanie Schwaar","doi":"10.1007/s41237-023-00207-0","DOIUrl":"https://doi.org/10.1007/s41237-023-00207-0","url":null,"abstract":"Abstract The analysis of text data using artificial intelligence and statistical methods has become increasingly important in recent years. One application is the automatic assignment of documents. For this purpose, a classification model is trained on the basis of historical data. If the structure of the texts to be classified changes over time, the quality of the classification will decrease. Change point detection algorithms can counteract this. Such algorithms automatically detect changes in the structure of the texts and indicate that the trained classification model has to be adapted. However, the undesired influence of the length of the document needs to be handled when modeling the text data. We present a multinomial change-point model detecting changes in text structures. The results are supported by simulation studies.","PeriodicalId":39640,"journal":{"name":"Behaviormetrika","volume":"119 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136209726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monetary incentives and eye movements: an eye-tracking investigation in a risky choice experiment with real and hypothetical incentives 金钱激励和眼球运动:在真实和假设激励的风险选择实验中的眼球追踪调查
Q1 Mathematics Pub Date : 2023-09-29 DOI: 10.1007/s41237-023-00210-5
Nobuyuki Uto
{"title":"Monetary incentives and eye movements: an eye-tracking investigation in a risky choice experiment with real and hypothetical incentives","authors":"Nobuyuki Uto","doi":"10.1007/s41237-023-00210-5","DOIUrl":"https://doi.org/10.1007/s41237-023-00210-5","url":null,"abstract":"","PeriodicalId":39640,"journal":{"name":"Behaviormetrika","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135194000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
InstanceSHAP: an instance-based estimation approach for Shapley values InstanceSHAP: Shapley值的基于实例的估计方法
Q1 Mathematics Pub Date : 2023-09-11 DOI: 10.1007/s41237-023-00208-z
Golnoosh Babaeic, Paolo Giudicid
Abstract The growth of artificial intelligence applications requires to find out which explanatory variables mostly contribute to the predictions. Model-agnostic methods, such as SHapley Additive exPlanations (SHAP) can solve this problem: they can determine the contribution of each variable to the predictions of any machine learning model. The SHAP approach requires a background dataset, which usually consists of random instances sampled from the train data. In this paper, we aim to understand the insofar unexplored effect of the background dataset on SHAP and, to this end, we propose a variant of SHAP, InstanceSHAP, that uses instance-based learning to produce a more effective background dataset for binary classification. We exemplify our proposed methods on an application that concerns peer-to-peer lending credit risk assessment. Our experimental results reveal that the proposed model can effectively improve the ordinary SHAP method, leading to Shapley values for the variables that are more concentrated on fewer variables, leading to simpler explanations.
人工智能应用的增长需要找出哪些解释变量对预测的贡献最大。SHapley加性解释(SHAP)等与模型无关的方法可以解决这个问题:它们可以确定每个变量对任何机器学习模型的预测的贡献。SHAP方法需要一个背景数据集,该数据集通常由从列车数据中抽样的随机实例组成。在本文中,我们的目标是了解背景数据集对SHAP迄今未被探索的影响,为此,我们提出了SHAP的一个变体,InstanceSHAP,它使用基于实例的学习来生成更有效的背景数据集用于二进制分类。我们在一个涉及点对点贷款信用风险评估的应用程序上举例说明了我们提出的方法。实验结果表明,本文提出的模型可以有效地改进普通的SHAP方法,使变量的Shapley值更集中在更少的变量上,从而使解释更简单。
{"title":"InstanceSHAP: an instance-based estimation approach for Shapley values","authors":"Golnoosh Babaeic, Paolo Giudicid","doi":"10.1007/s41237-023-00208-z","DOIUrl":"https://doi.org/10.1007/s41237-023-00208-z","url":null,"abstract":"Abstract The growth of artificial intelligence applications requires to find out which explanatory variables mostly contribute to the predictions. Model-agnostic methods, such as SHapley Additive exPlanations (SHAP) can solve this problem: they can determine the contribution of each variable to the predictions of any machine learning model. The SHAP approach requires a background dataset, which usually consists of random instances sampled from the train data. In this paper, we aim to understand the insofar unexplored effect of the background dataset on SHAP and, to this end, we propose a variant of SHAP, InstanceSHAP, that uses instance-based learning to produce a more effective background dataset for binary classification. We exemplify our proposed methods on an application that concerns peer-to-peer lending credit risk assessment. Our experimental results reveal that the proposed model can effectively improve the ordinary SHAP method, leading to Shapley values for the variables that are more concentrated on fewer variables, leading to simpler explanations.","PeriodicalId":39640,"journal":{"name":"Behaviormetrika","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135982360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bayes factor for single-case ABAB design data 单例ABAB设计数据的贝叶斯因子
Q1 Mathematics Pub Date : 2023-08-22 DOI: 10.1007/s41237-023-00206-1
Tsuyoshi Yamada, Kensuke Okada
{"title":"Bayes factor for single-case ABAB design data","authors":"Tsuyoshi Yamada, Kensuke Okada","doi":"10.1007/s41237-023-00206-1","DOIUrl":"https://doi.org/10.1007/s41237-023-00206-1","url":null,"abstract":"","PeriodicalId":39640,"journal":{"name":"Behaviormetrika","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46394336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Can’t see the forest for the trees 只见树木不见森林
Q1 Mathematics Pub Date : 2023-07-29 DOI: 10.1007/s41237-023-00205-2
G. Szepannek, Björn-Hergen von Holt
{"title":"Can’t see the forest for the trees","authors":"G. Szepannek, Björn-Hergen von Holt","doi":"10.1007/s41237-023-00205-2","DOIUrl":"https://doi.org/10.1007/s41237-023-00205-2","url":null,"abstract":"","PeriodicalId":39640,"journal":{"name":"Behaviormetrika","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"53133280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 19
A new algorithm and a discussion about visualization for logistic reduced rank regression 一种新的逻辑降秩回归算法及其可视化讨论
Q1 Mathematics Pub Date : 2023-07-12 DOI: 10.1007/s41237-023-00204-3
M. de Rooij
{"title":"A new algorithm and a discussion about visualization for logistic reduced rank regression","authors":"M. de Rooij","doi":"10.1007/s41237-023-00204-3","DOIUrl":"https://doi.org/10.1007/s41237-023-00204-3","url":null,"abstract":"","PeriodicalId":39640,"journal":{"name":"Behaviormetrika","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45507423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Behaviormetrika
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1