Pub Date : 2011-05-04DOI: 10.1007/978-3-642-19692-8_46
Nancy Diaz, Elena Redelsheimer, D. Dornfeld
{"title":"Energy Consumption Characterization and Reduction Strategies for Milling Machine Tool Use","authors":"Nancy Diaz, Elena Redelsheimer, D. Dornfeld","doi":"10.1007/978-3-642-19692-8_46","DOIUrl":"https://doi.org/10.1007/978-3-642-19692-8_46","url":null,"abstract":"","PeriodicalId":404076,"journal":{"name":"Laboratory for Manufacturing and Sustainability","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125039874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Seungchoun Choi, S. Tripathi, D. Dornfeld, F. Doyle
Millisecond scale benzotriazole (BTA) adsorption kinetics in acidic aqueous solution containing 0.01 M glycine and 0.01 M BTA have been investigated. Chronoamperometry was used to measure current densities on the surface of a micro-copper electrode in pH 4 aqueous solutions containing 0.01 M glycine with or without 0.01 M BTA. In the presence of BTA the current density decreased as the inverse of the square root of time for a few seconds due to adsorption of BTA. At potentials above 0.4 V saturated calomel electrode the current leveled off after a second or so due to the formation of a Cu(I)BTA monolayer on the copper surface. Based on these data a governing equation was constructed and solved to determine the initial kinetics of BTA adsorption. Analysis shows that material removal during copper chemical mechanical planarization (CMP) in this slurry chemistry occurs mostly by direct dissolution of copper species into the aqueous solution rather than mechanical removal of oxidized or pure copper species and that each interaction between a pad asperity and a given site on the copper removes only a small fraction of the Cu(I)BTA species present at that site.
研究了毫秒级苯并三唑(BTA)在含有0.01 M甘氨酸和0.01 M BTA的酸性水溶液中的吸附动力学。在pH为4的水溶液中,用计时电流法测量了含有0.01 M甘氨酸和不含0.01 M BTA的微铜电极表面的电流密度。在BTA存在的情况下,由于BTA的吸附,电流密度在几秒钟内以时间平方根的反比下降。在电位高于0.4 V的饱和甘汞电极上,由于铜表面形成Cu(I)BTA单层,电流在一秒左右后趋于平稳。在此基础上,建立并求解了BTA吸附初始动力学方程。分析表明,在这种浆料化学过程中,铜化学机械平化(CMP)过程中的物质去除主要是通过直接将铜溶解到水溶液中,而不是通过机械去除氧化或纯铜,并且垫片粗糙度与铜上给定位置之间的每次相互作用只去除该位置存在的一小部分Cu(I)BTA。
{"title":"Copper CMP Modeling: Millisecond Scale Adsorption Kinetics of BTA in Glycine-Containing Solutions at pH 4","authors":"Seungchoun Choi, S. Tripathi, D. Dornfeld, F. Doyle","doi":"10.1149/1.3499217","DOIUrl":"https://doi.org/10.1149/1.3499217","url":null,"abstract":"Millisecond scale benzotriazole (BTA) adsorption kinetics in acidic aqueous solution containing 0.01 M glycine and 0.01 M BTA have been investigated. Chronoamperometry was used to measure current densities on the surface of a micro-copper electrode in pH 4 aqueous solutions containing 0.01 M glycine with or without 0.01 M BTA. In the presence of BTA the current density decreased as the inverse of the square root of time for a few seconds due to adsorption of BTA. At potentials above 0.4 V saturated calomel electrode the current leveled off after a second or so due to the formation of a Cu(I)BTA monolayer on the copper surface. Based on these data a governing equation was constructed and solved to determine the initial kinetics of BTA adsorption. Analysis shows that material removal during copper chemical mechanical planarization (CMP) in this slurry chemistry occurs mostly by direct dissolution of copper species into the aqueous solution rather than mechanical removal of oxidized or pure copper species and that each interaction between a pad asperity and a given site on the copper removes only a small fraction of the Cu(I)BTA species present at that site.","PeriodicalId":404076,"journal":{"name":"Laboratory for Manufacturing and Sustainability","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132977955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Toxic chemicals used in product design and manufacturing are grave concerns due to their toxic impact on human health. Implementing sustainable material selection strategies on toxic chemicals can substantially improve the sustainability of products in both design and manufacturing processes. In this paper, a schematic method is presented for characterizing and benchmarking the human health impact of toxic chemicals, as a visual aid to facilitate decision-making in the material selection process for sustainable design and manufacturing. In this schematic method, the human health impact of a toxic chemical is characterized by two critical parameters: daily exposure risk R and environmental persistence T. The human health impact of a toxic chemical is represented by its position in the R−T two-dimensional plot, which enables the screening and benchmarking of toxic chemicals to be easily made through comparing their relative positions in the characterization plot. A case study is performed on six toxic chemicals commonly used as solvents for cleaning and degreasing in product development and manufacturing.
{"title":"A Schematic Method for Sustainable Material Selection of Toxic Chemicals in Design and Manufacturing","authors":"C. Yuan, D. Dornfeld","doi":"10.1115/1.4002199","DOIUrl":"https://doi.org/10.1115/1.4002199","url":null,"abstract":"Toxic chemicals used in product design and manufacturing are grave concerns due to their toxic impact on human health. Implementing sustainable material selection strategies on toxic chemicals can substantially improve the sustainability of products in both design and manufacturing processes. In this paper, a schematic method is presented for characterizing and benchmarking the human health impact of toxic chemicals, as a visual aid to facilitate decision-making in the material selection process for sustainable design and manufacturing. In this schematic method, the human health impact of a toxic chemical is characterized by two critical parameters: daily exposure risk R and environmental persistence T. The human health impact of a toxic chemical is represented by its position in the R−T two-dimensional plot, which enables the screening and benchmarking of toxic chemicals to be easily made through comparing their relative positions in the characterization plot. A case study is performed on six toxic chemicals commonly used as solvents for cleaning and degreasing in product development and manufacturing.","PeriodicalId":404076,"journal":{"name":"Laboratory for Manufacturing and Sustainability","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121713016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-03-05DOI: 10.1007/978-3-642-00568-8_1
D. Dornfeld, S. Min
{"title":"A Review of Burr Formation in Machining","authors":"D. Dornfeld, S. Min","doi":"10.1007/978-3-642-00568-8_1","DOIUrl":"https://doi.org/10.1007/978-3-642-00568-8_1","url":null,"abstract":"","PeriodicalId":404076,"journal":{"name":"Laboratory for Manufacturing and Sustainability","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122348112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Toxic chemicals used in product design and manufacturing are grave concerns due to their significant impact on human health. Sustainable material selections are needed by industry to reduce the overall impact of toxic chemicals in both design and manufacturing. In this paper, we integrate the human health impact assessment into standard material selection process for developing a sustainable material selection metric for decision support in design and manufacturing. A schematic method is presented for characterizing and benchmarking the human health impact of toxic chemicals. A case study is performed on six toxic chemicals used as solvents in semiconductor manufacturing. Reliability of the schematic benchmarking results is checked and validated by comparing the results with that of conventional Human Toxicity Potential (HTP) method.
{"title":"SUSTAINABLE MATERIAL SELECTION OF TOXIC CHEMICALS IN DESIGN AND MANUFACTURING FROM HUMAN HEALTH IMPACT PERSPECTIVE","authors":"C. Yuan, D. Dornfeld","doi":"10.1115/DETC2009-87145","DOIUrl":"https://doi.org/10.1115/DETC2009-87145","url":null,"abstract":"Toxic chemicals used in product design and manufacturing are grave concerns due to their significant impact on human health. Sustainable material selections are needed by industry to reduce the overall impact of toxic chemicals in both design and manufacturing. In this paper, we integrate the human health impact assessment into standard material selection process for developing a sustainable material selection metric for decision support in design and manufacturing. A schematic method is presented for characterizing and benchmarking the human health impact of toxic chemicals. A case study is performed on six toxic chemicals used as solvents in semiconductor manufacturing. Reliability of the schematic benchmarking results is checked and validated by comparing the results with that of conventional Human Toxicity Potential (HTP) method.","PeriodicalId":404076,"journal":{"name":"Laboratory for Manufacturing and Sustainability","volume":"155 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2009-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134638131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2009-04-16DOI: 10.1557/PROC-1157-E03-08
D. Dornfeld
Today the requirements for reducing the impact of our manufacturing activities are increasing as the world awakes to and addresses the environmental impacts of our society. Energy consumption, greenhouse gas emissions, materials availability and use, environmental impact levels, etc. are all topics of interest. Semiconductor manufacturing in general and process steps such as CMP are not exempt from this and, in many cases, the industry has led the efforts in reducing impacts. This paper will first review some of the drivers for sustainable manufacturing, then define some of the terms that will be useful for determining the engineering aspects of sustainability and sustainable manufacturing, as well as metrics for assessing the impact of manufacturing in general and CMP in particular. An assessments of CMP will be given to illustrate the potential for “design for the environment” in CMP and related processes. Consideration will be given to research opportunities, including process modeling, that this focus provides to CMP researchers, consumable suppliers and industry.
{"title":"Opportunities and Challenges to Sustainable Manufacturing and CMP","authors":"D. Dornfeld","doi":"10.1557/PROC-1157-E03-08","DOIUrl":"https://doi.org/10.1557/PROC-1157-E03-08","url":null,"abstract":"Today the requirements for reducing the impact of our manufacturing activities are increasing as the world awakes to and addresses the environmental impacts of our society. Energy consumption, greenhouse gas emissions, materials availability and use, environmental impact levels, etc. are all topics of interest. Semiconductor manufacturing in general and process steps such as CMP are not exempt from this and, in many cases, the industry has led the efforts in reducing impacts. This paper will first review some of the drivers for sustainable manufacturing, then define some of the terms that will be useful for determining the engineering aspects of sustainability and sustainable manufacturing, as well as metrics for assessing the impact of manufacturing in general and CMP in particular. An assessments of CMP will be given to illustrate the potential for “design for the environment” in CMP and related processes. Consideration will be given to research opportunities, including process modeling, that this focus provides to CMP researchers, consumable suppliers and industry.","PeriodicalId":404076,"journal":{"name":"Laboratory for Manufacturing and Sustainability","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2009-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114627409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2009-04-16DOI: 10.1557/PROC-1157-E02-03
S. Tripathi, Seungchoun Choi, F. Doyle, D. Dornfeld
Copper CMP is a corrosion-wear process, in which mechanical and chemical-electrochemical phenomena interact synergistically. Existing models generally treat copper CMP as a corrosion enhanced wear process. However, the underlying mechanisms suggest that copper CMP would be better modeled as a wear enhanced corrosion process, where intermittent asperity/abrasive action enhances the local oxidation rate, and is followed by time-dependent passivation of copper. In this work an integrated tribo-chemical model of material removal at the asperity/ abrasive scale was developed. Abrasive and pad properties, process parameters, and slurry chemistry are all considered. Three important components of this model are the passivation kinetics of copper in CMP slurry chemicals; the mechanical response of protective films on copper; and the interaction frequency of copper with abrasives/pad asperities. The material removal rate during copper CMP was simulated using the tribo-chemical model, using input parameters obtained experimentally in accompanying research or from the literature.
{"title":"Integrated Tribo-Chemical Modeling of Copper CMP","authors":"S. Tripathi, Seungchoun Choi, F. Doyle, D. Dornfeld","doi":"10.1557/PROC-1157-E02-03","DOIUrl":"https://doi.org/10.1557/PROC-1157-E02-03","url":null,"abstract":"Copper CMP is a corrosion-wear process, in which mechanical and chemical-electrochemical phenomena interact synergistically. Existing models generally treat copper CMP as a corrosion enhanced wear process. However, the underlying mechanisms suggest that copper CMP would be better modeled as a wear enhanced corrosion process, where intermittent asperity/abrasive action enhances the local oxidation rate, and is followed by time-dependent passivation of copper. In this work an integrated tribo-chemical model of material removal at the asperity/ abrasive scale was developed. Abrasive and pad properties, process parameters, and slurry chemistry are all considered. Three important components of this model are the passivation kinetics of copper in CMP slurry chemicals; the mechanical response of protective films on copper; and the interaction frequency of copper with abrasives/pad asperities. The material removal rate during copper CMP was simulated using the tribo-chemical model, using input parameters obtained experimentally in accompanying research or from the literature.","PeriodicalId":404076,"journal":{"name":"Laboratory for Manufacturing and Sustainability","volume":"214 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2009-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133707684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2009-04-02DOI: 10.1007/978-3-642-00568-8_25
S. Garg, D. Dornfeld, K. Berger
{"title":"Formulation of the Chip Cleanability Mechanics from fluid transport","authors":"S. Garg, D. Dornfeld, K. Berger","doi":"10.1007/978-3-642-00568-8_25","DOIUrl":"https://doi.org/10.1007/978-3-642-00568-8_25","url":null,"abstract":"","PeriodicalId":404076,"journal":{"name":"Laboratory for Manufacturing and Sustainability","volume":"117 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2009-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117274001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2008-10-07DOI: 10.1115/MSEC_ICMP2008-72202
A. Vijayaraghavan, Stephen Jayanathan, M. Helu, D. Dornfeld
Microfluidic devices are gaining popularity in a variety of applications, ranging from molecular biology to bio-defense. However, the widespread adoption of this technology is constrained by the lack of efficient and cost-effective manufacturing processes. This paper focuses on the roller imprinting process, which is being developed to rapidly and inexpensively fabricate micro-fluidic devices. In this process, a cylindrical roll with raised features on its surface creates imprints by rolling over a fixed workpiece substrate and mechanically deforming it. Roller imprinting aims to replace processes that were developed for laboratory scale prototyping which tend to not be scalable and have high equipment requirements and overheads. We discuss the limitations of PDMS soft lithography in large-scale manufacture of microfluidic devices. We also discuss the design, fabrication, and testing of a simple roller imprinting device. This imprinter has been developed based on the principles of precision machine design and is implemented using a three-axis machine tool for actuation and position measurement. A framework for the micromachining of precision imprint rolls is also presented.
{"title":"DESIGN AND FABRICATION OF A ROLLER IMPRINTING DEVICE FOR MICROFLUIDIC DEVICE MANUFACTURING","authors":"A. Vijayaraghavan, Stephen Jayanathan, M. Helu, D. Dornfeld","doi":"10.1115/MSEC_ICMP2008-72202","DOIUrl":"https://doi.org/10.1115/MSEC_ICMP2008-72202","url":null,"abstract":"Microfluidic devices are gaining popularity in a variety of applications, ranging from molecular biology to bio-defense. However, the widespread adoption of this technology is constrained by the lack of efficient and cost-effective manufacturing processes. This paper focuses on the roller imprinting process, which is being developed to rapidly and inexpensively fabricate micro-fluidic devices. In this process, a cylindrical roll with raised features on its surface creates imprints by rolling over a fixed workpiece substrate and mechanically deforming it. Roller imprinting aims to replace processes that were developed for laboratory scale prototyping which tend to not be scalable and have high equipment requirements and overheads. We discuss the limitations of PDMS soft lithography in large-scale manufacture of microfluidic devices. We also discuss the design, fabrication, and testing of a simple roller imprinting device. This imprinter has been developed based on the principles of precision machine design and is implemented using a three-axis machine tool for actuation and position measurement. A framework for the micromachining of precision imprint rolls is also presented.","PeriodicalId":404076,"journal":{"name":"Laboratory for Manufacturing and Sustainability","volume":"103 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2008-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121750678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Efficient and cost-effective manufacturing methods are needed for the widespread adoption of microfluidic devices. This paper focuses on the roller imprinting process, which is a new method for fabricating microfluidic devices. In this process, a cylindrical roll with raised features on its surface creates imprints by rolling over a fixed workpiece substrate and mechanically deforming it. Imprint precision is a function of the imprint roll features, the substrate material, and process parameters. This paper presents an analysis of the effects of process variables on the imprint using finite element (FE) simulations of the roller imprinting process.
{"title":"PROCEDURAL DESIGN OF IMPRINT ROLLS FOR FLUID PATHWAY FABRICATION","authors":"A. Vijayaraghavan, D. Dornfeld","doi":"10.1115/DETC2007-35187","DOIUrl":"https://doi.org/10.1115/DETC2007-35187","url":null,"abstract":"Efficient and cost-effective manufacturing methods are needed for the widespread adoption of microfluidic devices. This paper focuses on the roller imprinting process, which is a new method for fabricating microfluidic devices. In this process, a cylindrical roll with raised features on its surface creates imprints by rolling over a fixed workpiece substrate and mechanically deforming it. Imprint precision is a function of the imprint roll features, the substrate material, and process parameters. This paper presents an analysis of the effects of process variables on the imprint using finite element (FE) simulations of the roller imprinting process.","PeriodicalId":404076,"journal":{"name":"Laboratory for Manufacturing and Sustainability","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131288100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}