首页 > 最新文献

JP Journal of Biostatistics最新文献

英文 中文
MULTIPLE CO-INERTIA ANALYSIS APPLIED TO ECOLOGICAL STUDY OF ENDANGERED MEDICINAL PLANT COMMUNITIES OF PHELLODENDRON AMURENSE 多重共惯性分析在黄柏濒危药用植物群落生态学研究中的应用
IF 0.1 Q4 STATISTICS & PROBABILITY Pub Date : 2022-05-13 DOI: 10.17654/0973514322014
N. Song, Bin Zhang, Shiguang Su, Jintun Zhang
{"title":"MULTIPLE CO-INERTIA ANALYSIS APPLIED TO ECOLOGICAL STUDY OF ENDANGERED MEDICINAL PLANT COMMUNITIES OF PHELLODENDRON AMURENSE","authors":"N. Song, Bin Zhang, Shiguang Su, Jintun Zhang","doi":"10.17654/0973514322014","DOIUrl":"https://doi.org/10.17654/0973514322014","url":null,"abstract":"","PeriodicalId":40703,"journal":{"name":"JP Journal of Biostatistics","volume":" ","pages":""},"PeriodicalIF":0.1,"publicationDate":"2022-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44726710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ADAPTATION TO MEASURES FOR AVOIDING THE PANDEMIC COVID-19 - GENERAL OVERVIEW OF PSYCHOLOGICAL AND PHYSIOLOGICAL EFFECTS ON MEDICAL AND DENTAL STUDENTS 为避免COVID-19大流行而采取的适应措施——对医学和牙科专业学生心理和生理影响的概述
IF 0.1 Q4 STATISTICS & PROBABILITY Pub Date : 2022-05-13 DOI: 10.17654/0973514322015
M. Aksu, T. Aksu
{"title":"ADAPTATION TO MEASURES FOR AVOIDING THE PANDEMIC COVID-19 - GENERAL OVERVIEW OF PSYCHOLOGICAL AND PHYSIOLOGICAL EFFECTS ON MEDICAL AND DENTAL STUDENTS","authors":"M. Aksu, T. Aksu","doi":"10.17654/0973514322015","DOIUrl":"https://doi.org/10.17654/0973514322015","url":null,"abstract":"","PeriodicalId":40703,"journal":{"name":"JP Journal of Biostatistics","volume":" ","pages":""},"PeriodicalIF":0.1,"publicationDate":"2022-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47376583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
k-NEAREST NEIGHBOR METHOD FOR PREDICTION OF REFRACTIVE ERRORS IN PATIENTS OF CHENNAI CITY IN INDIA 预测印度金奈市屈光不正患者的k-最近邻方法
IF 0.1 Q4 STATISTICS & PROBABILITY Pub Date : 2022-05-12 DOI: 10.17654/0973514322013
G. Gopi, T. Prabakaran
{"title":"k-NEAREST NEIGHBOR METHOD FOR PREDICTION OF REFRACTIVE ERRORS IN PATIENTS OF CHENNAI CITY IN INDIA","authors":"G. Gopi, T. Prabakaran","doi":"10.17654/0973514322013","DOIUrl":"https://doi.org/10.17654/0973514322013","url":null,"abstract":"","PeriodicalId":40703,"journal":{"name":"JP Journal of Biostatistics","volume":" ","pages":""},"PeriodicalIF":0.1,"publicationDate":"2022-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41367408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
STATISTICAL ANALYSIS OF COVID-19 DATA IN KINGDOM OF SAUDI ARABIA USING: SINE MODIFIED WEIBULL MODEL 用SINE修正WEIBULL模型对沙特阿拉伯王国新冠肺炎疫情数据的统计分析
IF 0.1 Q4 STATISTICS & PROBABILITY Pub Date : 2022-03-03 DOI: 10.17654/0973514322011
I. Elbatal, N. Alotaibi, Ibrahim Al-Dayel, A. W. Shawki, M. Elgarhy
{"title":"STATISTICAL ANALYSIS OF COVID-19 DATA IN KINGDOM OF SAUDI ARABIA USING: SINE MODIFIED WEIBULL MODEL","authors":"I. Elbatal, N. Alotaibi, Ibrahim Al-Dayel, A. W. Shawki, M. Elgarhy","doi":"10.17654/0973514322011","DOIUrl":"https://doi.org/10.17654/0973514322011","url":null,"abstract":"","PeriodicalId":40703,"journal":{"name":"JP Journal of Biostatistics","volume":" ","pages":""},"PeriodicalIF":0.1,"publicationDate":"2022-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46723182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PREDICTIVE MODEL FOR ASSESSMENT OF THE FACTORS INFLUENCING UNDER-FIVE CHILD DIARRHEA IN SUDAN 评估苏丹五岁以下儿童腹泻影响因素的预测模型
IF 0.1 Q4 STATISTICS & PROBABILITY Pub Date : 2022-03-01 DOI: 10.17654/0973514322005
Mohammed Omar Musa Mohammed, A. Abdallah
{"title":"PREDICTIVE MODEL FOR ASSESSMENT OF THE FACTORS INFLUENCING UNDER-FIVE CHILD DIARRHEA IN SUDAN","authors":"Mohammed Omar Musa Mohammed, A. Abdallah","doi":"10.17654/0973514322005","DOIUrl":"https://doi.org/10.17654/0973514322005","url":null,"abstract":"","PeriodicalId":40703,"journal":{"name":"JP Journal of Biostatistics","volume":" ","pages":""},"PeriodicalIF":0.1,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45015206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ACCURACY OF NEURAL NETWORK MODEL IN PREDICTING OUTCOME OF COVID 19 USING DEEP LEARNING APPROACH 基于深度学习方法的神经网络模型预测covid - 19结果的准确性
IF 0.1 Q4 STATISTICS & PROBABILITY Pub Date : 2022-01-01 DOI: 10.17654/0973514322008
K. Kuntoro
COVID-19 as the disease of concern motivates various scientists to investigate it in various perspectives. In statistical perspective, a number of statistical models are used to predict the outcome of COVID-19 cases given a number of risk factors. Accuracy of a statistical model in predicting the outcome is important to be determined. A part of supervised machine learning called deep learning is used to predict the outcome of COVID-19 given five predictors, new cases, age >= 65 years, prevalence of diabetes mellitus, female smoker, and male smoker. Big data of COVID-19 is downloaded from the website. A thousand data sets have been analyzed by neural network algorithm using library Keras.
新冠肺炎作为一种令人关注的疾病,促使不同的科学家从不同的角度对其进行研究。从统计学角度来看,考虑到许多风险因素,使用了许多统计模型来预测新冠肺炎病例的结果。统计模型在预测结果方面的准确性有待确定。被称为深度学习的监督机器学习的一部分用于预测新冠肺炎的结果,给出了五个预测因素,即新病例、年龄>=65岁、糖尿病患病率、女性吸烟者和男性吸烟者。新冠肺炎大数据可从网站下载。使用库Keras通过神经网络算法对1000个数据集进行了分析。
{"title":"ACCURACY OF NEURAL NETWORK MODEL IN PREDICTING OUTCOME OF COVID 19 USING DEEP LEARNING APPROACH","authors":"K. Kuntoro","doi":"10.17654/0973514322008","DOIUrl":"https://doi.org/10.17654/0973514322008","url":null,"abstract":"COVID-19 as the disease of concern motivates various scientists to investigate it in various perspectives. In statistical perspective, a number of statistical models are used to predict the outcome of COVID-19 cases given a number of risk factors. Accuracy of a statistical model in predicting the outcome is important to be determined. A part of supervised machine learning called deep learning is used to predict the outcome of COVID-19 given five predictors, new cases, age >= 65 years, prevalence of diabetes mellitus, female smoker, and male smoker. Big data of COVID-19 is downloaded from the website. A thousand data sets have been analyzed by neural network algorithm using library Keras.","PeriodicalId":40703,"journal":{"name":"JP Journal of Biostatistics","volume":" ","pages":""},"PeriodicalIF":0.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43656874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SURVIVAL ANALYSIS OF BREAST CANCER PATIENTS OF NORTH-EAST INDIA DURING 2016-2019 2016-2019年印度东北部乳腺癌患者生存率分析
IF 0.1 Q4 STATISTICS & PROBABILITY Pub Date : 2022-01-01 DOI: 10.17654/0973514322001
S. Bhattacharjee, S. Deka
{"title":"SURVIVAL ANALYSIS OF BREAST CANCER PATIENTS OF NORTH-EAST INDIA DURING 2016-2019","authors":"S. Bhattacharjee, S. Deka","doi":"10.17654/0973514322001","DOIUrl":"https://doi.org/10.17654/0973514322001","url":null,"abstract":"","PeriodicalId":40703,"journal":{"name":"JP Journal of Biostatistics","volume":" ","pages":""},"PeriodicalIF":0.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45342544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ESTIMATION OF PROBABILITY DENSITY FUNCTION AND INTENSITY FUNCTION OF THE SURVIVAL OF STOMACH CANCER PATIENTS USING REAL POLYNOMIALS 用实多项式估计胃癌患者生存的概率密度函数和强度函数
IF 0.1 Q4 STATISTICS & PROBABILITY Pub Date : 2022-01-01 DOI: 10.17654/0973514322010
K. Ratheesan
{"title":"ESTIMATION OF PROBABILITY DENSITY FUNCTION AND INTENSITY FUNCTION OF THE SURVIVAL OF STOMACH CANCER PATIENTS USING REAL POLYNOMIALS","authors":"K. Ratheesan","doi":"10.17654/0973514322010","DOIUrl":"https://doi.org/10.17654/0973514322010","url":null,"abstract":"","PeriodicalId":40703,"journal":{"name":"JP Journal of Biostatistics","volume":" ","pages":""},"PeriodicalIF":0.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48835236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
APPLICATION OF MULTISTATE MODEL IN ANALYZING HEAD AND NECK CANCER DATA 多状态模型在头颈部肿瘤数据分析中的应用
IF 0.1 Q4 STATISTICS & PROBABILITY Pub Date : 2022-01-01 DOI: 10.17654/0973514322003
T. Bindu
{"title":"APPLICATION OF MULTISTATE MODEL IN ANALYZING HEAD AND NECK CANCER DATA","authors":"T. Bindu","doi":"10.17654/0973514322003","DOIUrl":"https://doi.org/10.17654/0973514322003","url":null,"abstract":"","PeriodicalId":40703,"journal":{"name":"JP Journal of Biostatistics","volume":" ","pages":""},"PeriodicalIF":0.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48683003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
JOB SATISFACTION AND ORGANIZATIONAL COMMITMENT OF DOCTORS: A CASE STUDY OF SAUDI ARABIA 医生工作满意度与组织承诺:以沙特阿拉伯为例
IF 0.1 Q4 STATISTICS & PROBABILITY Pub Date : 2022-01-01 DOI: 10.17654/0973514322002
A. Almarashi, K. Khan
{"title":"JOB SATISFACTION AND ORGANIZATIONAL COMMITMENT OF DOCTORS: A CASE STUDY OF SAUDI ARABIA","authors":"A. Almarashi, K. Khan","doi":"10.17654/0973514322002","DOIUrl":"https://doi.org/10.17654/0973514322002","url":null,"abstract":"","PeriodicalId":40703,"journal":{"name":"JP Journal of Biostatistics","volume":" ","pages":""},"PeriodicalIF":0.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48073017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
JP Journal of Biostatistics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1