首页 > 最新文献

Proceedings of the 14th SEGJ International Symposium, Online, 18–21 October 2021最新文献

英文 中文
A spontaneous dynamic fault rupture simulation without giving a priori rupture starting area and rupture stopping area 一种不预先给出破裂起始区和破裂停止区的自发动态断层破裂模拟方法
M. Yamada, K. Hada, R. Imai, H. Fujiwara
{"title":"A spontaneous dynamic fault rupture simulation without giving a priori rupture starting area and rupture stopping area","authors":"M. Yamada, K. Hada, R. Imai, H. Fujiwara","doi":"10.1190/segj2021-080.1","DOIUrl":"https://doi.org/10.1190/segj2021-080.1","url":null,"abstract":"","PeriodicalId":414700,"journal":{"name":"Proceedings of the 14th SEGJ International Symposium, Online, 18–21 October 2021","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116217343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anisotropy-based wireline logging data normalization in shale gas horizontal wells and customized formation evaluation in Changning shale gas field 基于各向异性的页岩气水平井测井数据归一化及长宁页岩气田地层个性化评价
M. Liao, Bin Lin, Zhong Li, Yang Yang, Yanhui Fu, H. F. Yao
{"title":"Anisotropy-based wireline logging data normalization in shale gas horizontal wells and customized formation evaluation in Changning shale gas field","authors":"M. Liao, Bin Lin, Zhong Li, Yang Yang, Yanhui Fu, H. F. Yao","doi":"10.1190/segj2021-072.1","DOIUrl":"https://doi.org/10.1190/segj2021-072.1","url":null,"abstract":"","PeriodicalId":414700,"journal":{"name":"Proceedings of the 14th SEGJ International Symposium, Online, 18–21 October 2021","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121966972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative evaluation of the relative permittivity of artificial soil with altered soil types and water content 不同土壤类型和含水量人工土壤相对介电常数的定量评价
Toshinori Kanemitsu, Yohei Morifuji, Kenji Kubota
{"title":"Quantitative evaluation of the relative permittivity of artificial soil with altered soil types and water content","authors":"Toshinori Kanemitsu, Yohei Morifuji, Kenji Kubota","doi":"10.1190/segj2021-046.1","DOIUrl":"https://doi.org/10.1190/segj2021-046.1","url":null,"abstract":"","PeriodicalId":414700,"journal":{"name":"Proceedings of the 14th SEGJ International Symposium, Online, 18–21 October 2021","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130629594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
High-resolution image acquired by deep sub-bottom profiling of small-scale features using complex attributes analysis on northeastern Hawaiian Arch 基于复杂属性分析的夏威夷拱门东北段小尺度地物深底剖面高分辨率图像
M. Yamashita, S. Miura, Ryôichi Miura
{"title":"High-resolution image acquired by deep sub-bottom profiling of small-scale features using complex attributes analysis on northeastern Hawaiian Arch","authors":"M. Yamashita, S. Miura, Ryôichi Miura","doi":"10.1190/segj2021-071.1","DOIUrl":"https://doi.org/10.1190/segj2021-071.1","url":null,"abstract":"","PeriodicalId":414700,"journal":{"name":"Proceedings of the 14th SEGJ International Symposium, Online, 18–21 October 2021","volume":"2268 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130243659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shape carving methods of geologic body interpretation from seismic data based on deep learning 基于深度学习的地震资料地质体解释的形状雕刻方法
S. Petrov, T. Mukerji, Xin Zhang, Xinfei Yan
The task of seismic data interpretation is a time-consuming and uncertain process. Machine learning tools can help to build a shortcut between raw seismic data and reservoir characteristics of interest. Recently, techniques involving convolutional neural networks have started to gain momentum. Convolutional neural networks are particularly efficient at pattern recognition within images, and this is why they are suitable for seismic facies classification and interpretation tasks. We experimented with three different architectures based on convolutional layers and compared them with different synthetic and field datasets in terms of quality of the seismic interpretation results and computational efficiency. The architectures used in our study were three deep fully convolutional architectures: a 3D convolutional network with a fully connected head; a 2D fully convolutional network, and U-Net. We found the U-Net architecture to be both robust and the fastest when performing classification at the prediction stage. The 3D convolutional model with a fully connected head was the slowest, while a fully convolutional model was unstable in its predictions.
地震资料解释是一个耗时且不确定的过程。机器学习工具可以帮助在原始地震数据和感兴趣的储层特征之间建立一条捷径。最近,涉及卷积神经网络的技术开始获得动力。卷积神经网络在图像模式识别方面特别有效,这就是为什么它们适用于地震相分类和解释任务。我们尝试了三种基于卷积层的不同架构,并将它们与不同的合成数据集和现场数据集进行了比较,以获得地震解释结果的质量和计算效率。在我们的研究中使用的架构是三种深度全卷积架构:一个具有完全连接头部的3D卷积网络;2D全卷积网络和U-Net。我们发现在预测阶段执行分类时,U-Net架构既健壮又最快。头部完全连接的三维卷积模型是最慢的,而完全卷积模型的预测是不稳定的。
{"title":"Shape carving methods of geologic body interpretation from seismic data based on deep learning","authors":"S. Petrov, T. Mukerji, Xin Zhang, Xinfei Yan","doi":"10.1190/segj2021-066.1","DOIUrl":"https://doi.org/10.1190/segj2021-066.1","url":null,"abstract":"The task of seismic data interpretation is a time-consuming and uncertain process. Machine learning tools can help to build a shortcut between raw seismic data and reservoir characteristics of interest. Recently, techniques involving convolutional neural networks have started to gain momentum. Convolutional neural networks are particularly efficient at pattern recognition within images, and this is why they are suitable for seismic facies classification and interpretation tasks. We experimented with three different architectures based on convolutional layers and compared them with different synthetic and field datasets in terms of quality of the seismic interpretation results and computational efficiency. The architectures used in our study were three deep fully convolutional architectures: a 3D convolutional network with a fully connected head; a 2D fully convolutional network, and U-Net. We found the U-Net architecture to be both robust and the fastest when performing classification at the prediction stage. The 3D convolutional model with a fully connected head was the slowest, while a fully convolutional model was unstable in its predictions.","PeriodicalId":414700,"journal":{"name":"Proceedings of the 14th SEGJ International Symposium, Online, 18–21 October 2021","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130279594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Statistical analysis of the Vs30 structure of Almeria city (southeast of Spain) inferred from topographic slope method 用地形坡度法对西班牙东南部阿尔梅里亚市Vs30结构的统计分析
F. López, M. Navarro, P. Martínez-Pagán, A. García-Jerez, J. Pérez-Cuevas, T. Enomoto
{"title":"Statistical analysis of the Vs30 structure of Almeria city (southeast of Spain) inferred from topographic slope method","authors":"F. López, M. Navarro, P. Martínez-Pagán, A. García-Jerez, J. Pérez-Cuevas, T. Enomoto","doi":"10.1190/segj2021-088.1","DOIUrl":"https://doi.org/10.1190/segj2021-088.1","url":null,"abstract":"","PeriodicalId":414700,"journal":{"name":"Proceedings of the 14th SEGJ International Symposium, Online, 18–21 October 2021","volume":"207 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134236338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robust time-lapse full-waveform inversion using boundary integral representation: Numerical examples for borehole and ambient seismic noise monitoring 使用边界积分表示的鲁棒时移全波形反演:井眼和环境地震噪声监测的数值例子
S. Minato
{"title":"Robust time-lapse full-waveform inversion using boundary integral representation: Numerical examples for borehole and ambient seismic noise monitoring","authors":"S. Minato","doi":"10.1190/segj2021-065.1","DOIUrl":"https://doi.org/10.1190/segj2021-065.1","url":null,"abstract":"","PeriodicalId":414700,"journal":{"name":"Proceedings of the 14th SEGJ International Symposium, Online, 18–21 October 2021","volume":"67 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131030510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detection of P-S travel time for low SNR event by particle motion analysis 用粒子运动分析检测低信噪比事件的P-S走时
Jingyi Sun, Y. Mukuhira, T. Nagata, T. Nonomura, H. Moriya, Takatoshi Ito
{"title":"Detection of P-S travel time for low SNR event by particle motion analysis","authors":"Jingyi Sun, Y. Mukuhira, T. Nagata, T. Nonomura, H. Moriya, Takatoshi Ito","doi":"10.1190/segj2021-034.1","DOIUrl":"https://doi.org/10.1190/segj2021-034.1","url":null,"abstract":"","PeriodicalId":414700,"journal":{"name":"Proceedings of the 14th SEGJ International Symposium, Online, 18–21 October 2021","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133694931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface displacement during the periods before and after the 2018 northern Osaka earthquake estimated by PSInSAR analysis PSInSAR分析估算2018年大阪北部地震前后的地表位移
Y. Shigemitsu, K. Ishitsuka, Weiren Lin
{"title":"Surface displacement during the periods before and after the 2018 northern Osaka earthquake estimated by PSInSAR analysis","authors":"Y. Shigemitsu, K. Ishitsuka, Weiren Lin","doi":"10.1190/segj2021-037.1","DOIUrl":"https://doi.org/10.1190/segj2021-037.1","url":null,"abstract":"","PeriodicalId":414700,"journal":{"name":"Proceedings of the 14th SEGJ International Symposium, Online, 18–21 October 2021","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114676752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anisotropic seismic reservoir characterization: Practical applications 各向异性地震储层表征:实际应用
M. Asaka
{"title":"Anisotropic seismic reservoir characterization: Practical applications","authors":"M. Asaka","doi":"10.1190/segj2021-062.1","DOIUrl":"https://doi.org/10.1190/segj2021-062.1","url":null,"abstract":"","PeriodicalId":414700,"journal":{"name":"Proceedings of the 14th SEGJ International Symposium, Online, 18–21 October 2021","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117102340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Proceedings of the 14th SEGJ International Symposium, Online, 18–21 October 2021
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1