首页 > 最新文献

American Journal of Remote Sensing最新文献

英文 中文
On the Criterion of Proximity to the True Value: Information Approach 论接近真实价值的标准:信息方法
Pub Date : 2019-07-09 DOI: 10.11648/J.AJRS.20190701.11
I. Feldman
What is the criterion of proximity to the true value of the measured value: absolute or relative error? The least squares method traditionally operates with absolute values of corrections to measured values, and the equalization is carried out under the condition of the minimum of the sum of squares of absolute corrections. However, as shown in the article, the informational approach leads to the conclusion that the measure of proximity to the true value is a relative measurement error. Therefore, it is advisable to carry out an equalization under the condition of a minimum of the sum of squares of not absolute, but relative corrections. This is equivalent to equalization, in which the weight of the correction depends on the size of the object being measured: the larger the object being measured, the smaller the weight of the corresponding amendment, and its value can be increased during equalization. In this case, the described approach leads to a kind of “method of least relative squares” (MLRS). Another interesting consequence of the information approach is that the relative measurement error modulus has the meaning of the probability of a measurement result deviating from the true value. The article presents the required information approach formulas for the weights of the amendments when using the MLRS. In particular, it is shown that the angular discrepancy distribution in a triangle depends on the lengths of the sides.
测量值接近真实值的标准是什么:绝对误差还是相对误差?传统的最小二乘方法是对测量值的绝对值进行校正,在绝对校正平方和最小的条件下进行均衡。然而,如本文所示,信息方法得出的结论是,接近真实值的测量是相对测量误差。因此,在非绝对而是相对修正的平方和最小的条件下进行均衡是可取的。这相当于均衡,其中修正量的权重取决于被测物体的大小:被测物体越大,相应修正量的权重越小,在均衡时可以增大其值。在这种情况下,所描述的方法导致了一种“最小相对二乘法”(MLRS)。信息方法的另一个有趣的结果是,相对测量误差模量具有测量结果偏离真实值的概率的含义。本文给出了在使用MLRS时修正权值所需的信息逼近公式。特别指出,三角形的角差分布与边长有关。
{"title":"On the Criterion of Proximity to the True Value: Information Approach","authors":"I. Feldman","doi":"10.11648/J.AJRS.20190701.11","DOIUrl":"https://doi.org/10.11648/J.AJRS.20190701.11","url":null,"abstract":"What is the criterion of proximity to the true value of the measured value: absolute or relative error? The least squares method traditionally operates with absolute values of corrections to measured values, and the equalization is carried out under the condition of the minimum of the sum of squares of absolute corrections. However, as shown in the article, the informational approach leads to the conclusion that the measure of proximity to the true value is a relative measurement error. Therefore, it is advisable to carry out an equalization under the condition of a minimum of the sum of squares of not absolute, but relative corrections. This is equivalent to equalization, in which the weight of the correction depends on the size of the object being measured: the larger the object being measured, the smaller the weight of the corresponding amendment, and its value can be increased during equalization. In this case, the described approach leads to a kind of “method of least relative squares” (MLRS). Another interesting consequence of the information approach is that the relative measurement error modulus has the meaning of the probability of a measurement result deviating from the true value. The article presents the required information approach formulas for the weights of the amendments when using the MLRS. In particular, it is shown that the angular discrepancy distribution in a triangle depends on the lengths of the sides.","PeriodicalId":417484,"journal":{"name":"American Journal of Remote Sensing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133904994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
American Journal of Remote Sensing
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1