首页 > 最新文献

Journal of Computer Chemistry-Japan最新文献

英文 中文
日本コンピュータ化学会 2022秋季年会を終えて 日本计算机化学会2022秋季年会结束后,
IF 0.1 Q4 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2022-01-01 DOI: 10.2477/jccj.foreword_21-4
Iori Shimada
{"title":"日本コンピュータ化学会 2022秋季年会を終えて","authors":"Iori Shimada","doi":"10.2477/jccj.foreword_21-4","DOIUrl":"https://doi.org/10.2477/jccj.foreword_21-4","url":null,"abstract":"","PeriodicalId":41909,"journal":{"name":"Journal of Computer Chemistry-Japan","volume":"1 1","pages":""},"PeriodicalIF":0.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69061381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extraction of Chemical Substance Names from Patent Publications 从专利出版物中提取化学物质名称
IF 0.1 Q4 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2022-01-01 DOI: 10.2477/jccj.2021-0047
Rumiko Tanaka, Shin-ichi Nakayama
{"title":"Extraction of Chemical Substance Names from Patent Publications","authors":"Rumiko Tanaka, Shin-ichi Nakayama","doi":"10.2477/jccj.2021-0047","DOIUrl":"https://doi.org/10.2477/jccj.2021-0047","url":null,"abstract":"","PeriodicalId":41909,"journal":{"name":"Journal of Computer Chemistry-Japan","volume":"1 1","pages":""},"PeriodicalIF":0.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69048060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In Memory of Mr. Senda with Winmostar 为了纪念森达先生
IF 0.1 Q4 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2022-01-01 DOI: 10.2477/jccj.2022-0017
Tadayosi Yoshimura
{"title":"In Memory of Mr. Senda with Winmostar","authors":"Tadayosi Yoshimura","doi":"10.2477/jccj.2022-0017","DOIUrl":"https://doi.org/10.2477/jccj.2022-0017","url":null,"abstract":"","PeriodicalId":41909,"journal":{"name":"Journal of Computer Chemistry-Japan","volume":"1 1","pages":""},"PeriodicalIF":0.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69049262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid in Silico Drug Discovery Study toward the Development of Oral Antivirals for COVID-19 面向新型冠状病毒口服抗病毒药物开发的硅杂化药物发现研究
IF 0.1 Q4 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2022-01-01 DOI: 10.2477/jccj.2022-0029
Uika Koshimizu, Junichi Ono, Y. Fukunishi, Hiromi Nakai
Hybrid in silico drug discovery was performed by combining large-scale quantum molecular dynamics (QMD) simulations with the conventional in silico drug discovery, focusing on developing covalent inhibitors against the main protease (M-pro) of SARS-CoV-2, the virus responsible for ongoing COVID-19 pandemic. The crystal structures and instantaneous structures obtained from the large-scale QMD simulations for M-pro were used as receptors in ensemble docking to estimate the binding affinities of the four ligands: the natural substrate recognized by M-pro, that recognized by the other enzyme of SARS-CoV-2, approved covalent inhibitor (PF-07321332), and the new candidate compound X determined from virtual screening. The present result shows that the binding affinity of X was comparable to that of PF-07321332, demonstrating the potency of our drug discovery.
通过将大规模量子分子动力学(QMD)模拟与传统的计算机药物发现相结合,进行了混合计算机药物发现,重点是开发针对SARS-CoV-2主要蛋白酶(M-pro)的共价抑制剂。SARS-CoV-2是导致当前COVID-19大流行的病毒。利用大规模QMD模拟获得的M-pro晶体结构和瞬时结构作为受体进行集合对接,估计M-pro识别的天然底物、SARS-CoV-2的另一酶识别的底物、批准的共价抑制剂(PF-07321332)和虚拟筛选确定的新候选化合物X的结合亲和力。目前的结果表明,X的结合亲和力与PF-07321332相当,证明了我们的药物发现的效力。
{"title":"Hybrid in Silico Drug Discovery Study toward the Development of Oral Antivirals for COVID-19","authors":"Uika Koshimizu, Junichi Ono, Y. Fukunishi, Hiromi Nakai","doi":"10.2477/jccj.2022-0029","DOIUrl":"https://doi.org/10.2477/jccj.2022-0029","url":null,"abstract":"Hybrid in silico drug discovery was performed by combining large-scale quantum molecular dynamics (QMD) simulations with the conventional in silico drug discovery, focusing on developing covalent inhibitors against the main protease (M-pro) of SARS-CoV-2, the virus responsible for ongoing COVID-19 pandemic. The crystal structures and instantaneous structures obtained from the large-scale QMD simulations for M-pro were used as receptors in ensemble docking to estimate the binding affinities of the four ligands: the natural substrate recognized by M-pro, that recognized by the other enzyme of SARS-CoV-2, approved covalent inhibitor (PF-07321332), and the new candidate compound X determined from virtual screening. The present result shows that the binding affinity of X was comparable to that of PF-07321332, demonstrating the potency of our drug discovery.","PeriodicalId":41909,"journal":{"name":"Journal of Computer Chemistry-Japan","volume":"1 1","pages":""},"PeriodicalIF":0.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69050012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
分子軌道エネルギーを説明変数とした機械学習 以分子轨道能量为解释变量的机器学习
IF 0.1 Q4 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2022-01-01 DOI: 10.2477/jccj.2023-0001
H. Teramae, Meiyan Xuan, Jun-ichi Takayama, M. Okazaki, Takeshi Sakamoto
{"title":"分子軌道エネルギーを説明変数とした機械学習","authors":"H. Teramae, Meiyan Xuan, Jun-ichi Takayama, M. Okazaki, Takeshi Sakamoto","doi":"10.2477/jccj.2023-0001","DOIUrl":"https://doi.org/10.2477/jccj.2023-0001","url":null,"abstract":"","PeriodicalId":41909,"journal":{"name":"Journal of Computer Chemistry-Japan","volume":"1 1","pages":""},"PeriodicalIF":0.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69050996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical Interpretation of Coarse-grained Stiffness Matrix Based on Elastic-body Modeling of Molecular Assemblies. 基于分子组合体弹性体模型的粗粒刚度矩阵力学解释。
IF 0.1 Q4 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2022-01-01 DOI: 10.2477/jccj.2023-0006
H. Houjou, Hirota Nakajima, Shota Okamura, Ryutaro Kikuoka
{"title":"Mechanical Interpretation of Coarse-grained Stiffness Matrix Based on Elastic-body Modeling of Molecular Assemblies.","authors":"H. Houjou, Hirota Nakajima, Shota Okamura, Ryutaro Kikuoka","doi":"10.2477/jccj.2023-0006","DOIUrl":"https://doi.org/10.2477/jccj.2023-0006","url":null,"abstract":"","PeriodicalId":41909,"journal":{"name":"Journal of Computer Chemistry-Japan","volume":"11 1","pages":""},"PeriodicalIF":0.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69051076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Learning Organotransition Metal Reactions Using Graph Neural Networks 用图神经网络学习有机过渡金属反应
IF 0.1 Q4 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2022-01-01 DOI: 10.2477/jccj.2023-0012
Motoji Sakai, Mitsunori Kaneshige, Koji Yasuda
{"title":"Learning Organotransition Metal Reactions Using Graph Neural Networks","authors":"Motoji Sakai, Mitsunori Kaneshige, Koji Yasuda","doi":"10.2477/jccj.2023-0012","DOIUrl":"https://doi.org/10.2477/jccj.2023-0012","url":null,"abstract":"","PeriodicalId":41909,"journal":{"name":"Journal of Computer Chemistry-Japan","volume":"5 1","pages":""},"PeriodicalIF":0.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69051932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mr. Norio Senda, my admirer 仙田诺里欧先生,我的仰慕者
IF 0.1 Q4 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2022-01-01 DOI: 10.2477/jccj.2022-0015
Reiko Usui
{"title":"Mr. Norio Senda, my admirer","authors":"Reiko Usui","doi":"10.2477/jccj.2022-0015","DOIUrl":"https://doi.org/10.2477/jccj.2022-0015","url":null,"abstract":"","PeriodicalId":41909,"journal":{"name":"Journal of Computer Chemistry-Japan","volume":"1 1","pages":""},"PeriodicalIF":0.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69049119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Science Communication Activities with Senda-san 与仙田先生的科学传播活动
IF 0.1 Q4 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2022-01-01 DOI: 10.2477/jccj.2022-0018
Keiko Nakamura
{"title":"Science Communication Activities with Senda-san","authors":"Keiko Nakamura","doi":"10.2477/jccj.2022-0018","DOIUrl":"https://doi.org/10.2477/jccj.2022-0018","url":null,"abstract":"","PeriodicalId":41909,"journal":{"name":"Journal of Computer Chemistry-Japan","volume":"1 1","pages":""},"PeriodicalIF":0.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69049276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Protein Folding Model Using Quantum Computation 基于量子计算的蛋白质折叠模型
IF 0.1 Q4 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2022-01-01 DOI: 10.2477/jccj.2022-0022
Rui Saito, Koji Okuwaki, Y. Mochizuki, Ryutaro Nagai, Takumi Kato, K. Sugisaki, Yuichiro Minato
{"title":"Protein Folding Model Using Quantum Computation","authors":"Rui Saito, Koji Okuwaki, Y. Mochizuki, Ryutaro Nagai, Takumi Kato, K. Sugisaki, Yuichiro Minato","doi":"10.2477/jccj.2022-0022","DOIUrl":"https://doi.org/10.2477/jccj.2022-0022","url":null,"abstract":"","PeriodicalId":41909,"journal":{"name":"Journal of Computer Chemistry-Japan","volume":"58 1","pages":""},"PeriodicalIF":0.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69049406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Computer Chemistry-Japan
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1