The purpose of this work is to determine the heat transfer coefficient of translucent fences, considering the number of storeys of buildings, climatic factors, such as wind velocity and outdoor temperature. To achieve this goal, the following tasks were solved: analysis of heat transfer in translucent enclosures as a quasi-stationary process; analysis of heat transfer processes in translucent barriers, which are a combination of solid transparent plates and air gaps connected by a frame structure; determination of the heat transfer coefficient on the glass surface depending on climatic factors and the radiant component. The most important result is the empirical dependence of the heat transfer coefficient on the outer surface of the window block on the Reynolds criterion, the dependences for determining the heat transfer coefficient of window blocks are improved, considering climatic parameters. The heat transfer coefficient of the window block as a whole is presented in the form of analytical ratios, considering the location of the building and its height, changes in wind velocity and outdoor temperature. This methodology was tested on the example of a civil administrative building, for which the heat transfer coefficients of window structures of non-standard series were evaluated. The significance of the research results lies in the possibility of using the obtained dependencies to assess the thermal characteristics of window structures of non-standard shapes. The dependences of the heat transfer coefficient on wind speed and outside air temperature given in the paper can be used in the energy audit of buildings.
{"title":"Methodology for Determining Heat Losses through Translucent Construction","authors":"Vitaliy Malyarenko, Natalia Alyokhina, Svetlana Orlova","doi":"10.52254/1857-0070.2023.3-59.08","DOIUrl":"https://doi.org/10.52254/1857-0070.2023.3-59.08","url":null,"abstract":"The purpose of this work is to determine the heat transfer coefficient of translucent fences, considering the number of storeys of buildings, climatic factors, such as wind velocity and outdoor temperature. To achieve this goal, the following tasks were solved: analysis of heat transfer in translucent enclosures as a quasi-stationary process; analysis of heat transfer processes in translucent barriers, which are a combination of solid transparent plates and air gaps connected by a frame structure; determination of the heat transfer coefficient on the glass surface depending on climatic factors and the radiant component. The most important result is the empirical dependence of the heat transfer coefficient on the outer surface of the window block on the Reynolds criterion, the dependences for determining the heat transfer coefficient of window blocks are improved, considering climatic parameters. The heat transfer coefficient of the window block as a whole is presented in the form of analytical ratios, considering the location of the building and its height, changes in wind velocity and outdoor temperature. This methodology was tested on the example of a civil administrative building, for which the heat transfer coefficients of window structures of non-standard series were evaluated. The significance of the research results lies in the possibility of using the obtained dependencies to assess the thermal characteristics of window structures of non-standard shapes. The dependences of the heat transfer coefficient on wind speed and outside air temperature given in the paper can be used in the energy audit of buildings.","PeriodicalId":41974,"journal":{"name":"Problemele Energeticii Regionale","volume":" ","pages":""},"PeriodicalIF":0.3,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46834438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.52254/1857-0070.2023.3-59.03
V. Lobodzinskiy, Nikolay Buryk, L.Yu. Spinul, Valeriy Chibelis, O. Illina
The purpose of the work is to develop a mathematical model of a cable transmission line, which allows modeling and choosing the optimal conditions for controlled switching to limit overvoltage at the development and design stage. The goal is achieved by solving the problem of determining the initial angle of each phase, so that each phase has an initial switching angle equal to zero with a time delay. A high-voltage cable line for a voltage of 330 kV, implemented using Matlab, has been chosen as the object of study. The most significant result is the method of numerical simulation of the cable line that allows you to analyze transients when each phase of a three-phase cable line is connected to a three-phase source with a time delay, the switching angle of all phases is zero. This, in turn, makes it possible to limit switching overvoltages. The significance of the results obtained lies in the possibility of the proposed technique to choose the optimal conditions for controlled switching, which makes it possible to use it in the design of switching nodes, as well as the use of controlled switching to eliminate unwanted electrical transients during planned switching. The simulation results showed that the greatest effect of using numerical simulation is when each phase of a three-phase cable line is connected to a three-phase source with a time delay of 1/150 second, then the switching angle of all phases is zero, which makes it possible to limit switching overvoltages. Keywords: three-phase cable line, switching overvoltage, transient processes, controlled switching, theory of multipoles, modeling of electrical engineering objects.
{"title":"Reduction of Overvoltages under Connection on a High-Voltage Cable Line Due to Optimal Controlled Switching","authors":"V. Lobodzinskiy, Nikolay Buryk, L.Yu. Spinul, Valeriy Chibelis, O. Illina","doi":"10.52254/1857-0070.2023.3-59.03","DOIUrl":"https://doi.org/10.52254/1857-0070.2023.3-59.03","url":null,"abstract":"The purpose of the work is to develop a mathematical model of a cable transmission line, which allows modeling and choosing the optimal conditions for controlled switching to limit overvoltage at the development and design stage. The goal is achieved by solving the problem of determining the initial angle of each phase, so that each phase has an initial switching angle equal to zero with a time delay. A high-voltage cable line for a voltage of 330 kV, implemented using Matlab, has been chosen as the object of study. The most significant result is the method of numerical simulation of the cable line that allows you to analyze transients when each phase of a three-phase cable line is connected to a three-phase source with a time delay, the switching angle of all phases is zero. This, in turn, makes it possible to limit switching overvoltages. The significance of the results obtained lies in the possibility of the proposed technique to choose the optimal conditions for controlled switching, which makes it possible to use it in the design of switching nodes, as well as the use of controlled switching to eliminate unwanted electrical transients during planned switching. The simulation results showed that the greatest effect of using numerical simulation is when each phase of a three-phase cable line is connected to a three-phase source with a time delay of 1/150 second, then the switching angle of all phases is zero, which makes it possible to limit switching overvoltages. Keywords: three-phase cable line, switching overvoltage, transient processes, controlled switching, theory of multipoles, modeling of electrical engineering objects.","PeriodicalId":41974,"journal":{"name":"Problemele Energeticii Regionale","volume":" ","pages":""},"PeriodicalIF":0.3,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46161236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.52254/1857-0070.2023.3-59.13
Valerii Kryvonosov, Oleksandr Matviienko
Forecasting the resource of the electric motor makes it possible to increase the reliability of the operation of the electrical complex. The aim of the work is to study the possibility of using changes in the capacitor discharge time constants under conditions of local reactive power compensation as a criterion parameter for predicting the life of an electric motor. To achieve this goal, the following tasks were solved: an analysis of methods for predicting the resource of an electric motor was carried out, a differential equation was analyzed, and relationships between the insulation resistance and the capacitor discharge time constants were established. The most important result is the establishment of the relationship between the state of the insulation and the value of the time constant of the discharge of the capacitor. The most significant result is that the change in the time constant of the discharge is used as a criterion parameter for predicting the resource of the electric motor. The significance of the study is that the value obtained after the first shutdown of the electric motor is taken as the base value of the discharge time constant. The limiting values of the discharge time constants make it possible to estimate the resource of the electric motor after each shutdown. A method and a device for monitoring open-phase network modes are proposed, and when disconnected, control the value of the insulation resistance of the electric motor and predict the residual life of the electric motor.
{"title":"Studies of the Change in the Time Constants of the Discharge of the Capacitor to Predict the Residual life of the Operation of the Electric Motor","authors":"Valerii Kryvonosov, Oleksandr Matviienko","doi":"10.52254/1857-0070.2023.3-59.13","DOIUrl":"https://doi.org/10.52254/1857-0070.2023.3-59.13","url":null,"abstract":"Forecasting the resource of the electric motor makes it possible to increase the reliability of the operation of the electrical complex. The aim of the work is to study the possibility of using changes in the capacitor discharge time constants under conditions of local reactive power compensation as a criterion parameter for predicting the life of an electric motor. To achieve this goal, the following tasks were solved: an analysis of methods for predicting the resource of an electric motor was carried out, a differential equation was analyzed, and relationships between the insulation resistance and the capacitor discharge time constants were established. The most important result is the establishment of the relationship between the state of the insulation and the value of the time constant of the discharge of the capacitor. The most significant result is that the change in the time constant of the discharge is used as a criterion parameter for predicting the resource of the electric motor. The significance of the study is that the value obtained after the first shutdown of the electric motor is taken as the base value of the discharge time constant. The limiting values of the discharge time constants make it possible to estimate the resource of the electric motor after each shutdown. A method and a device for monitoring open-phase network modes are proposed, and when disconnected, control the value of the insulation resistance of the electric motor and predict the residual life of the electric motor.","PeriodicalId":41974,"journal":{"name":"Problemele Energeticii Regionale","volume":" ","pages":""},"PeriodicalIF":0.3,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45040562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-01DOI: 10.52254/1857-0070.2023.2-58-06
P. Matrenin, A. Khalyasmaa, Y. V. Potachits
Digitalization of the energy sector leads to an increase in the volume and rate of data collection. A primary barrier to the proper management of the technological data is the lack of data labeling corresponding to emergency modes, power equipment technical state, etc. Thus, despite the large amount of data, there is a shortage of labeled data suitable for training, validating and testing the machine learning models. Labeling by an expert takes too much time, so there is an actual task to automatically identify data fragments that are potentially of interest. The aim of the work is to develop an algorithm for prioritizing the fragments of the time series using the compact recurrent autoencoder. To achieve the goal, a neural network architecture was developed based on recurrent encoding and decoding cells, capable of unsupervised learning. The model was tested on two data sets: a synthetic sinusoidal signal with missing values and electric current measurements with thermal limit deviations. The substantial results of the work are the compact architecture of the autocoding model and the high interpretability of the output. The most significant achievements of the study are both the autocoding neural network model, which does not require initial assumption about the type of deviations, and the proposed algorithm for prioritizing the data fragments. The significance of the results is prooved by the reduction of the time for analyzing and labeling large data arrays with technological parameters of the electrical networks, which allows using these data for training, validating and testing.
{"title":"Recurrent Neural Network-Based Autoencoder for Problems of Automatic Time Series Analysis at Power Facilities","authors":"P. Matrenin, A. Khalyasmaa, Y. V. Potachits","doi":"10.52254/1857-0070.2023.2-58-06","DOIUrl":"https://doi.org/10.52254/1857-0070.2023.2-58-06","url":null,"abstract":"Digitalization of the energy sector leads to an increase in the volume and rate of data collection. A primary barrier to the proper management of the technological data is the lack of data labeling corresponding to emergency modes, power equipment technical state, etc. Thus, despite the large amount of data, there is a shortage of labeled data suitable for training, validating and testing the machine learning models. Labeling by an expert takes too much time, so there is an actual task to automatically identify data fragments that are potentially of interest. The aim of the work is to develop an algorithm for prioritizing the fragments of the time series using the compact recurrent autoencoder. To achieve the goal, a neural network architecture was developed based on recurrent encoding and decoding cells, capable of unsupervised learning. The model was tested on two data sets: a synthetic sinusoidal signal with missing values and electric current measurements with thermal limit deviations. The substantial results of the work are the compact architecture of the autocoding model and the high interpretability of the output. The most significant achievements of the study are both the autocoding neural network model, which does not require initial assumption about the type of deviations, and the proposed algorithm for prioritizing the data fragments. The significance of the results is prooved by the reduction of the time for analyzing and labeling large data arrays with technological parameters of the electrical networks, which allows using these data for training, validating and testing.","PeriodicalId":41974,"journal":{"name":"Problemele Energeticii Regionale","volume":" ","pages":""},"PeriodicalIF":0.3,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43308486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-01DOI: 10.52254/1857-0070.2023.2-58.04
O. Sotnikov, O. Tymochko, S. Bondarchuk, L. Dzhuma, V. Rudenko, Ya. Mandryk, K. Surkov, A. Palonyi, S. Olizarenko
The aim of this work is to reduce the amount of computational cost when monitoring the state of critical infrastructure objects using flying mobile robots equipped with correlation-extreme navigation system, based on minimizing the number of fragments of reference images. The goal is achieved by establishing a minimum permissible degree of correlation between the individual images, which form a set of reference images. The most essential result is substantiation of the approach to formation of a set of selective images based on scene correlation analysis and sufficiency of conservation of correlation connection of images in limits 0.6 ... 0.7. This reduces the amount of computation and extends the operating time of mobile robots while maintaining accuracy. The significance of the obtained results consists in the possibility of solving a complex task of forming a set of reference images, depending on the information content and stochastic conditions of sighting of critical infrastructure objects. The solution of this task will increase efficiency of critical infrastructure objects state control due to optimization of reference images number used in the monitoring process, increase operability, and provide high control reliability in stochastic sighting conditions. The novelty of the work lies in the fact that the method of process formalized description of forming a reference images set to ensure reliable monitoring of critical infrastructure facilities using flying mobile robots for various sectors of the economy, the practical application of which will ensure reliable control and their condition assessment.
{"title":"Generating a Set of Reference Images for Reliable Condition Monitoring of Critical Infrastructure using Mobile Robots","authors":"O. Sotnikov, O. Tymochko, S. Bondarchuk, L. Dzhuma, V. Rudenko, Ya. Mandryk, K. Surkov, A. Palonyi, S. Olizarenko","doi":"10.52254/1857-0070.2023.2-58.04","DOIUrl":"https://doi.org/10.52254/1857-0070.2023.2-58.04","url":null,"abstract":"The aim of this work is to reduce the amount of computational cost when monitoring the state of critical infrastructure objects using flying mobile robots equipped with correlation-extreme navigation system, based on minimizing the number of fragments of reference images. The goal is achieved by establishing a minimum permissible degree of correlation between the individual images, which form a set of reference images. The most essential result is substantiation of the approach to formation of a set of selective images based on scene correlation analysis and sufficiency of conservation of correlation connection of images in limits 0.6 ... 0.7. This reduces the amount of computation and extends the operating time of mobile robots while maintaining accuracy. The significance of the obtained results consists in the possibility of solving a complex task of forming a set of reference images, depending on the information content and stochastic conditions of sighting of critical infrastructure objects. The solution of this task will increase efficiency of critical infrastructure objects state control due to optimization of reference images number used in the monitoring process, increase operability, and provide high control reliability in stochastic sighting conditions. The novelty of the work lies in the fact that the method of process formalized description of forming a reference images set to ensure reliable monitoring of critical infrastructure facilities using flying mobile robots for various sectors of the economy, the practical application of which will ensure reliable control and their condition assessment.","PeriodicalId":41974,"journal":{"name":"Problemele Energeticii Regionale","volume":" ","pages":""},"PeriodicalIF":0.3,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41624878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-01DOI: 10.52254/1857-0070.2023.2-58-10
Y. Malakhov, A. Kuznetsov, A. G. Novoselov, A. V. Chebotar, I. Baranov, O. Rumyantseva, D. Mironova
In industries, the task of intensifying the process of dissolving gases in liquid media is relevant, since the time of the technological cycle depends on its course. Absorption processes affect the quality of the finished product and energy costs. In the food industry shell-and-tube jet injectors (SJT) are widespread, in which the mechanical injection of a free-falling jet of liquid surrounding its gas is applied. The aim of this work is to investigate the process of gas entrainment by free jets of water-malt slurry (WSS) in the pipes of the SJT. The set goal was achieved by solving the tasks: creating an experimental stand to study the process of atmospheric air injection by water-salt suspensions in the tubes of the SJT; developing a methodology for experimental studies; conducting research on the processes of gas injection by free liquid jets depending on the flow rate and liquid concentration. The most important result of the work is the establishment of graphical and mathematical dependences for the investigated WSS hydromodules, which allow calculating the flow rate carried away by the jet depending on the nozzle diameter. It is found that the gas phase entrainment by free suspension jets is influenced by the viscosity of the suspension, which depends on a number of technological parameters. The practical significance of the obtained results consists in the proposed methodology for calculating the design characteristics of SISA, providing the highest efficiency of its operation taking into account the properties of working environments and parameters of technological processes.
{"title":"Experimental Study of Gas Entrainment by Free Jets of Water-Slurry Suspensions into Tubes of Shell-and-Tube Jet-Injection Apparatus","authors":"Y. Malakhov, A. Kuznetsov, A. G. Novoselov, A. V. Chebotar, I. Baranov, O. Rumyantseva, D. Mironova","doi":"10.52254/1857-0070.2023.2-58-10","DOIUrl":"https://doi.org/10.52254/1857-0070.2023.2-58-10","url":null,"abstract":"In industries, the task of intensifying the process of dissolving gases in liquid media is relevant, since the time of the technological cycle depends on its course. Absorption processes affect the quality of the finished product and energy costs. In the food industry shell-and-tube jet injectors (SJT) are widespread, in which the mechanical injection of a free-falling jet of liquid surrounding its gas is applied. The aim of this work is to investigate the process of gas entrainment by free jets of water-malt slurry (WSS) in the pipes of the SJT. The set goal was achieved by solving the tasks: creating an experimental stand to study the process of atmospheric air injection by water-salt suspensions in the tubes of the SJT; developing a methodology for experimental studies; conducting research on the processes of gas injection by free liquid jets depending on the flow rate and liquid concentration. The most important result of the work is the establishment of graphical and mathematical dependences for the investigated WSS hydromodules, which allow calculating the flow rate carried away by the jet depending on the nozzle diameter. It is found that the gas phase entrainment by free suspension jets is influenced by the viscosity of the suspension, which depends on a number of technological parameters. The practical significance of the obtained results consists in the proposed methodology for calculating the design characteristics of SISA, providing the highest efficiency of its operation taking into account the properties of working environments and parameters of technological processes.","PeriodicalId":41974,"journal":{"name":"Problemele Energeticii Regionale","volume":" ","pages":""},"PeriodicalIF":0.3,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43962477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-01DOI: 10.52254/1857-0070.2023.2-58-05
S. Nesterov, V.D. Baklanov
The aim of the work is to create an interconnected numerical model of the magnetic, hydrodynamic and temperature fields of a ferrofluid sealer and to analyze thermal processes occurring in highspeed seals. This goal is achieved by selecting the necessary equations, boundary conditions, assumptions and physical properties of the magnetic fluid when building the numerical model of the sealer’s working gap, verification of the developed model by the results of the physical experiment. The important results of the work are the obtained and analyzed data on the influence both of physical properties and the geometry of the working gap of the ferrofluid sealer on the heating of the ferrofluid. With a shaft radius of 140 mm and a linear velocity at the shaft surface of 25 m/s due to viscous heating the ferrofluid temperature exceeding the ambient temperature can reach values up to 80 degrees and higher, it has been shown. The use of the equation proposed by V.E. Fertman to determine the thermal conductivity of ferrofluid and the mixing rule to determine its heat capacity allows us to describe with sufficient accuracy for engineering calculations the thermophysical properties of concentrated ferrofluids, it was shown. The significance of the results consists in the possibility of using the developed numerical model in the study of interrelated physical processes in the working gap of the ferrofluid sealer of rotating shafts. The physical and concentration parameters of the synthetic oil-based magnetic fluid given in the paper and the results of its test operation as part of a ferrofluid seal can be used to verify the results of newly developed models of ferrofluid devices.
{"title":"Development of a Model and Experimental Study of Thermal Processes in a Ferrofluid Sealer","authors":"S. Nesterov, V.D. Baklanov","doi":"10.52254/1857-0070.2023.2-58-05","DOIUrl":"https://doi.org/10.52254/1857-0070.2023.2-58-05","url":null,"abstract":"The aim of the work is to create an interconnected numerical model of the magnetic, hydrodynamic and temperature fields of a ferrofluid sealer and to analyze thermal processes occurring in highspeed seals. This goal is achieved by selecting the necessary equations, boundary conditions, assumptions and physical properties of the magnetic fluid when building the numerical model of the sealer’s working gap, verification of the developed model by the results of the physical experiment. The important results of the work are the obtained and analyzed data on the influence both of physical properties and the geometry of the working gap of the ferrofluid sealer on the heating of the ferrofluid. With a shaft radius of 140 mm and a linear velocity at the shaft surface of 25 m/s due to viscous heating the ferrofluid temperature exceeding the ambient temperature can reach values up to 80 degrees and higher, it has been shown. The use of the equation proposed by V.E. Fertman to determine the thermal conductivity of ferrofluid and the mixing rule to determine its heat capacity allows us to describe with sufficient accuracy for engineering calculations the thermophysical properties of concentrated ferrofluids, it was shown. The significance of the results consists in the possibility of using the developed numerical model in the study of interrelated physical processes in the working gap of the ferrofluid sealer of rotating shafts. The physical and concentration parameters of the synthetic oil-based magnetic fluid given in the paper and the results of its test operation as part of a ferrofluid seal can be used to verify the results of newly developed models of ferrofluid devices.","PeriodicalId":41974,"journal":{"name":"Problemele Energeticii Regionale","volume":" ","pages":""},"PeriodicalIF":0.3,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41779189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-01DOI: 10.52254/1857-0070.2023.2-58-12
I.G. Myrav'yova, N. Ivancha, V. R. Shcherbachov, V. Vishnyakov, E. P. Ermolina
. The purpose of this work was to study the possibility of correcting the shape and position of the plastic zone, as the main element of the structure of the burden column in a blast furnace, by controlling its loading mode. To achieve this goal, a new method has been developed for determining the coordinates of the lines of softening and melting of the burden based on information about the gas temperature above the surface of the charge and the characteristics of the distribution of burden materials, a criterion for the technological assessment of the cohesive zone has been proposed, and the relationship between its thickness and the distribution of the burden has been studied. Important results are the established connections between the coordinates of the softening and melting lines with the gas temperature above the surface of the charge and the characteristics of the distribution of burden materials, as well as the development of a criterion for the technological assessment of the formed cohesive zone and the justification for the possibility of adjusting its parameters by changing the distribution of charge components with the calculation determination of the composition and prediction of high-temperature properties of their mixtures in different zones of the furnace. The significance of the obtained results lies in the justification of the possibility and solution of the problem of improving the parameters of the cohesive zone by adjusting the charge loading regime to ensure the energy efficiency of the blast furnace process.
{"title":"Improvement of the Burden Column Structure by Controlling the Multicomponent Burden Loading Mode into the Blast Furnace","authors":"I.G. Myrav'yova, N. Ivancha, V. R. Shcherbachov, V. Vishnyakov, E. P. Ermolina","doi":"10.52254/1857-0070.2023.2-58-12","DOIUrl":"https://doi.org/10.52254/1857-0070.2023.2-58-12","url":null,"abstract":". The purpose of this work was to study the possibility of correcting the shape and position of the plastic zone, as the main element of the structure of the burden column in a blast furnace, by controlling its loading mode. To achieve this goal, a new method has been developed for determining the coordinates of the lines of softening and melting of the burden based on information about the gas temperature above the surface of the charge and the characteristics of the distribution of burden materials, a criterion for the technological assessment of the cohesive zone has been proposed, and the relationship between its thickness and the distribution of the burden has been studied. Important results are the established connections between the coordinates of the softening and melting lines with the gas temperature above the surface of the charge and the characteristics of the distribution of burden materials, as well as the development of a criterion for the technological assessment of the formed cohesive zone and the justification for the possibility of adjusting its parameters by changing the distribution of charge components with the calculation determination of the composition and prediction of high-temperature properties of their mixtures in different zones of the furnace. The significance of the obtained results lies in the justification of the possibility and solution of the problem of improving the parameters of the cohesive zone by adjusting the charge loading regime to ensure the energy efficiency of the blast furnace process.","PeriodicalId":41974,"journal":{"name":"Problemele Energeticii Regionale","volume":" ","pages":""},"PeriodicalIF":0.3,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46141316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-01DOI: 10.52254/1857-0070.2023.2-58.13
Iu.M. Simonenko, A.A. Chygrin, Ye.V. Kostenko
The purpose of this work is to create a compact supercharger to provide circulation of protective gas medium in a closed circuit. It was proposed to use a thermomechanical compressor to achieve this purpose. The operating principle of such devices is to change cyclically the temperature of the working medium in contact with warm and cold sources. Heating and cooling are carried out sequentially, pushing a part of gas through the regenerator by means of a displacer. The energy consumption for piston displacement is lower by an order of magnitude than that in conventional compressors. This makes it possible to use a seamless displacer movement mechanism. There can be two designs, both with one of the heat carriers close to ambient temperature. In a high-temperature thermomechanical compressor, the temperature is usually does not exceed 800 K. In the second type compressor, by reducing the absolute temperature of the cold "source" it is possible to achieve a high degree of compression at a relatively small temperature difference. The most significant result of the work is the design of the small-sized thermos-compressor that ensures a moderate degree of gas compression. The significance of the achieved results is shown in the compactness and tightness of the prototype for the use as an alternative to traditional machines in the field of inert gases production. The proposed technical solutions were tested during bench tests of the thermomechanical compressor. The experimental dependences were obtained of the flow rate characteristics on temperature mode, discharge pressure and cycle period.
{"title":"Cryogenic Thermomechanical Compressor","authors":"Iu.M. Simonenko, A.A. Chygrin, Ye.V. Kostenko","doi":"10.52254/1857-0070.2023.2-58.13","DOIUrl":"https://doi.org/10.52254/1857-0070.2023.2-58.13","url":null,"abstract":"The purpose of this work is to create a compact supercharger to provide circulation of protective gas medium in a closed circuit. It was proposed to use a thermomechanical compressor to achieve this purpose. The operating principle of such devices is to change cyclically the temperature of the working medium in contact with warm and cold sources. Heating and cooling are carried out sequentially, pushing a part of gas through the regenerator by means of a displacer. The energy consumption for piston displacement is lower by an order of magnitude than that in conventional compressors. This makes it possible to use a seamless displacer movement mechanism. There can be two designs, both with one of the heat carriers close to ambient temperature. In a high-temperature thermomechanical compressor, the temperature is usually does not exceed 800 K. In the second type compressor, by reducing the absolute temperature of the cold \"source\" it is possible to achieve a high degree of compression at a relatively small temperature difference. The most significant result of the work is the design of the small-sized thermos-compressor that ensures a moderate degree of gas compression. The significance of the achieved results is shown in the compactness and tightness of the prototype for the use as an alternative to traditional machines in the field of inert gases production. The proposed technical solutions were tested during bench tests of the thermomechanical compressor. The experimental dependences were obtained of the flow rate characteristics on temperature mode, discharge pressure and cycle period.","PeriodicalId":41974,"journal":{"name":"Problemele Energeticii Regionale","volume":" ","pages":""},"PeriodicalIF":0.3,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44916097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-01DOI: 10.52254/1857-0070.2023.2-58-08
M. Zablodskiy, P. Klendiy, O. Dudar, I. Radko
The purpose of research is determining the conditions of stimulating effect of the combined influence of constant and variable electromagnetic fields on the substrate and microorganisms in the bioreactor. This goal is achieved by solving the following tasks: development of mathematical model, conducting numerical simulation to determine the distribution of magnetic field in active zones of the stator-bioreactor system; conducting experimental researches during the fermentation of pig’s manure with litter from wheat straw in the mesophilic mode of fermentation. One category of bioreactors (control samples) was not exposed to influence of magnetic field, for the other, periodically were made treatment simultaneously with a low-frequency electromagnetic field and constant magnetic field synchronously with the process of mixing the substrate. The most significant results are: an experimental proof of effectiveness of the proposed method of intensification of the biogas output and increasing its quality, high accuracy of mathematical model of distribution the magnetic field in active zones of the stator-bioreactor system; assessment of the levels of consumption of nutrients by microorganisms from the substrate under the influence of the combined magnetic field and without influence of the magnetic field. The significance of obtained results lies in the fact that the proposed approach to intensification of the biogas output provides increase of the level production, the quality of biogas, and cumulative rate of methane output per unit of organic mass in the reactor.
{"title":"Research of the Influence of the Combined Electromagnetic Field on Biogas Output","authors":"M. Zablodskiy, P. Klendiy, O. Dudar, I. Radko","doi":"10.52254/1857-0070.2023.2-58-08","DOIUrl":"https://doi.org/10.52254/1857-0070.2023.2-58-08","url":null,"abstract":"The purpose of research is determining the conditions of stimulating effect of the combined influence of constant and variable electromagnetic fields on the substrate and microorganisms in the bioreactor. This goal is achieved by solving the following tasks: development of mathematical model, conducting numerical simulation to determine the distribution of magnetic field in active zones of the stator-bioreactor system; conducting experimental researches during the fermentation of pig’s manure with litter from wheat straw in the mesophilic mode of fermentation. One category of bioreactors (control samples) was not exposed to influence of magnetic field, for the other, periodically were made treatment simultaneously with a low-frequency electromagnetic field and constant magnetic field synchronously with the process of mixing the substrate. The most significant results are: an experimental proof of effectiveness of the proposed method of intensification of the biogas output and increasing its quality, high accuracy of mathematical model of distribution the magnetic field in active zones of the stator-bioreactor system; assessment of the levels of consumption of nutrients by microorganisms from the substrate under the influence of the combined magnetic field and without influence of the magnetic field. The significance of obtained results lies in the fact that the proposed approach to intensification of the biogas output provides increase of the level production, the quality of biogas, and cumulative rate of methane output per unit of organic mass in the reactor.","PeriodicalId":41974,"journal":{"name":"Problemele Energeticii Regionale","volume":" ","pages":""},"PeriodicalIF":0.3,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45848261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}