首页 > 最新文献

Datenbanksysteme für Business, Technologie und Web最新文献

英文 中文
Datenbanksysteme in Büro, Technik und Wissenschaft, GI-Fachtagung, Kaiserslautern, 6.-8. März 1991, Proceedings 办公室工程和科学使用的数据库系统谢谢
Pub Date : 1900-01-01 DOI: 10.1007/978-3-642-76530-8
Hans-Jürgen Appelrath
{"title":"Datenbanksysteme in Büro, Technik und Wissenschaft, GI-Fachtagung, Kaiserslautern, 6.-8. März 1991, Proceedings","authors":"Hans-Jürgen Appelrath","doi":"10.1007/978-3-642-76530-8","DOIUrl":"https://doi.org/10.1007/978-3-642-76530-8","url":null,"abstract":"","PeriodicalId":421643,"journal":{"name":"Datenbanksysteme für Business, Technologie und Web","volume":"117 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130430387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Charakteristiken des Komplex-Objekt-Begriffs und Ansätze zu dessen Realisierung 独特的特性和适应方法
Pub Date : 1900-01-01 DOI: 10.1007/978-3-642-70284-6_27
B. Mitschang
{"title":"Charakteristiken des Komplex-Objekt-Begriffs und Ansätze zu dessen Realisierung","authors":"B. Mitschang","doi":"10.1007/978-3-642-70284-6_27","DOIUrl":"https://doi.org/10.1007/978-3-642-70284-6_27","url":null,"abstract":"","PeriodicalId":421643,"journal":{"name":"Datenbanksysteme für Business, Technologie und Web","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134519859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
From Natural Language Questions to SPARQL Queries: A Pattern-based Approach 从自然语言问题到SPARQL查询:基于模式的方法
Pub Date : 1900-01-01 DOI: 10.18420/btw2019-18
Nadine Steinmetz, Ann-Katrin Arning, K. Sattler
Linked Data knowledge bases are valuable sources of knowledge which give insights, reveal facts about various relationships and provide a large amount of metadata in well-structured form. Although the format of semantic information – namely as RDF(S) – is kept simple by representing each fact as a triple of subject, property and object, the access to the knowledge is only available using SPARQL queries on the data. Therefore, Question Answering (QA) systems provide a user-friendly way to access any type of knowledge base and especially for Linked Data sources to get insight into the semantic information. As RDF(S) knowledge bases are usually structured in the same way and provide per se semantic metadata about the contained information, we provide a novel approach that is independent from the underlying knowledge base. Thus, the main contribution of our proposed approach constitutes the simple replaceability of the underlying knowledge base. The algorithm is based on general question and query patterns and only accesses the knowledge base for the actual query generation and execution. This paper presents the proposed approach and an evaluation in comparison to state-of-the-art Linked Data approaches for challenges of QA systems.
关联数据知识库是有价值的知识来源,它提供见解,揭示各种关系的事实,并以结构良好的形式提供大量元数据。尽管语义信息的格式(即RDF(S))通过将每个事实表示为主题、属性和对象的三元组来保持简单,但是对知识的访问只能使用数据上的SPARQL查询。因此,问答(QA)系统提供了一种用户友好的方式来访问任何类型的知识库,特别是关联数据源,以深入了解语义信息。由于RDF(S)知识库通常以相同的方式构建,并提供有关所包含信息的语义元数据,因此我们提供了一种独立于底层知识库的新方法。因此,我们提出的方法的主要贡献是底层知识库的简单可替换性。该算法基于一般的问题和查询模式,仅访问实际查询生成和执行的知识库。本文提出了建议的方法,并与最先进的关联数据方法进行了评估,以应对QA系统的挑战。
{"title":"From Natural Language Questions to SPARQL Queries: A Pattern-based Approach","authors":"Nadine Steinmetz, Ann-Katrin Arning, K. Sattler","doi":"10.18420/btw2019-18","DOIUrl":"https://doi.org/10.18420/btw2019-18","url":null,"abstract":"Linked Data knowledge bases are valuable sources of knowledge which give insights, reveal facts about various relationships and provide a large amount of metadata in well-structured form. Although the format of semantic information – namely as RDF(S) – is kept simple by representing each fact as a triple of subject, property and object, the access to the knowledge is only available using SPARQL queries on the data. Therefore, Question Answering (QA) systems provide a user-friendly way to access any type of knowledge base and especially for Linked Data sources to get insight into the semantic information. As RDF(S) knowledge bases are usually structured in the same way and provide per se semantic metadata about the contained information, we provide a novel approach that is independent from the underlying knowledge base. Thus, the main contribution of our proposed approach constitutes the simple replaceability of the underlying knowledge base. The algorithm is based on general question and query patterns and only accesses the knowledge base for the actual query generation and execution. This paper presents the proposed approach and an evaluation in comparison to state-of-the-art Linked Data approaches for challenges of QA systems.","PeriodicalId":421643,"journal":{"name":"Datenbanksysteme für Business, Technologie und Web","volume":"372 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132809078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
BiZTalk Server 2000: Business Process Management for the Internet BiZTalk Server 2000: Internet的业务流程管理
Pub Date : 1900-01-01 DOI: 10.1007/978-3-642-56687-5_40
J. Klein
{"title":"BiZTalk Server 2000: Business Process Management for the Internet","authors":"J. Klein","doi":"10.1007/978-3-642-56687-5_40","DOIUrl":"https://doi.org/10.1007/978-3-642-56687-5_40","url":null,"abstract":"","PeriodicalId":421643,"journal":{"name":"Datenbanksysteme für Business, Technologie und Web","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130712034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Compaction of Large Class Hierarchies in Databases for Chemical Engineering 化工数据库中大型类层次结构的压缩
Pub Date : 1900-01-01 DOI: 10.1007/978-3-642-60119-4_21
Markus Baumeister, M. Jarke
{"title":"Compaction of Large Class Hierarchies in Databases for Chemical Engineering","authors":"Markus Baumeister, M. Jarke","doi":"10.1007/978-3-642-60119-4_21","DOIUrl":"https://doi.org/10.1007/978-3-642-60119-4_21","url":null,"abstract":"","PeriodicalId":421643,"journal":{"name":"Datenbanksysteme für Business, Technologie und Web","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117317051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Benchmarking the Second Generation of Intel SGX for Machine Learning Workloads 对第二代英特尔SGX机器学习工作负载进行基准测试
Pub Date : 1900-01-01 DOI: 10.18420/BTW2023-44
Adrian Lutsch, Gagandeep Singh, Martin Mundt, R. Mogk, Carsten Binnig
{"title":"Benchmarking the Second Generation of Intel SGX for Machine Learning Workloads","authors":"Adrian Lutsch, Gagandeep Singh, Martin Mundt, R. Mogk, Carsten Binnig","doi":"10.18420/BTW2023-44","DOIUrl":"https://doi.org/10.18420/BTW2023-44","url":null,"abstract":"","PeriodicalId":421643,"journal":{"name":"Datenbanksysteme für Business, Technologie und Web","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130828589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient Data-Parallel Cumulative Aggregates for Large-Scale Machine Learning 大规模机器学习的高效数据并行累积聚合
Pub Date : 1900-01-01 DOI: 10.18420/btw2019-17
Matthias Boehm, A. Evfimievski, B. Reinwald
Cumulative aggregates are often overlooked yet important operations in large-scale machine learning (ML) systems. Examples are prefix sums and more complex aggregates, but also preprocessing techniques such as the removal of empty rows or columns. These operations are challenging to parallelize over distributed, blocked matrices—as commonly used in ML systems—due to recursive data dependencies. However, computing prefix sums is a classic example of a presumably sequential operation that can be efficiently parallelized via aggregation trees. In this paper, we describe an efficient framework for data-parallel cumulative aggregates over distributed, blocked matrices. The basic idea is a self-similar operator composed of a forward cascade that reduces the data size by orders of magnitude per iteration until the data fits in local memory, a local cumulative aggregate over the partial aggregates, and a backward cascade to produce the final result. We also generalize this framework for complex cumulative aggregates of sum-product expressions, and characterize the class of supported operations. Finally, we describe the end-to-end compiler and runtime integration into SystemML, and the use of cumulative aggregates in other operations. Our experiments show that this framework achieves both high performance for moderate data sizes and good scalability.
在大规模机器学习(ML)系统中,累积聚合通常是被忽视的重要操作。例如前缀和和更复杂的聚合,以及预处理技术,例如删除空行或空列。由于递归数据依赖关系,这些操作很难并行化分布的阻塞矩阵(如ML系统中常用的那样)。然而,计算前缀和是一个可以通过聚合树有效并行化的顺序操作的典型例子。在本文中,我们描述了一个有效的框架,用于数据并行累积聚合分布,阻塞矩阵。其基本思想是一个自相似的运算符,由前向级联组成,前向级联在每次迭代中按数量级减少数据大小,直到数据适合局部内存;局部累积聚合在部分聚合之上;后向级联产生最终结果。我们还将这个框架推广到和积表达式的复杂累积聚集,并描述了支持操作的类别。最后,我们描述了将端到端的编译器和运行时集成到SystemML中,以及在其他操作中使用累积聚合。我们的实验表明,该框架在中等数据量下实现了高性能和良好的可扩展性。
{"title":"Efficient Data-Parallel Cumulative Aggregates for Large-Scale Machine Learning","authors":"Matthias Boehm, A. Evfimievski, B. Reinwald","doi":"10.18420/btw2019-17","DOIUrl":"https://doi.org/10.18420/btw2019-17","url":null,"abstract":"Cumulative aggregates are often overlooked yet important operations in large-scale machine learning (ML) systems. Examples are prefix sums and more complex aggregates, but also preprocessing techniques such as the removal of empty rows or columns. These operations are challenging to parallelize over distributed, blocked matrices—as commonly used in ML systems—due to recursive data dependencies. However, computing prefix sums is a classic example of a presumably sequential operation that can be efficiently parallelized via aggregation trees. In this paper, we describe an efficient framework for data-parallel cumulative aggregates over distributed, blocked matrices. The basic idea is a self-similar operator composed of a forward cascade that reduces the data size by orders of magnitude per iteration until the data fits in local memory, a local cumulative aggregate over the partial aggregates, and a backward cascade to produce the final result. We also generalize this framework for complex cumulative aggregates of sum-product expressions, and characterize the class of supported operations. Finally, we describe the end-to-end compiler and runtime integration into SystemML, and the use of cumulative aggregates in other operations. Our experiments show that this framework achieves both high performance for moderate data sizes and good scalability.","PeriodicalId":421643,"journal":{"name":"Datenbanksysteme für Business, Technologie und Web","volume":"59 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131178361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
FAIR is not enough - A Metrics Framework to ensure Data Quality through Data Preparation 公平是不够的-通过数据准备确保数据质量的指标框架
Pub Date : 1900-01-01 DOI: 10.18420/BTW2023-61
Valerie Restat, Meike Klettke, U. Störl
{"title":"FAIR is not enough - A Metrics Framework to ensure Data Quality through Data Preparation","authors":"Valerie Restat, Meike Klettke, U. Störl","doi":"10.18420/BTW2023-61","DOIUrl":"https://doi.org/10.18420/BTW2023-61","url":null,"abstract":"","PeriodicalId":421643,"journal":{"name":"Datenbanksysteme für Business, Technologie und Web","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131085880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regelorientierte Erzeugung von Karten-Entwürfen auf geowissenschaftlichen Datenbanken 基于规则在地球科学数据库中制作测绘图
Pub Date : 1900-01-01 DOI: 10.1007/978-3-642-72617-0_16
Michael Drawin, K. Neumann, H. Ehrich
{"title":"Regelorientierte Erzeugung von Karten-Entwürfen auf geowissenschaftlichen Datenbanken","authors":"Michael Drawin, K. Neumann, H. Ehrich","doi":"10.1007/978-3-642-72617-0_16","DOIUrl":"https://doi.org/10.1007/978-3-642-72617-0_16","url":null,"abstract":"","PeriodicalId":421643,"journal":{"name":"Datenbanksysteme für Business, Technologie und Web","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133583856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Dokumentenmodell und automatische Klassifikation im Bürodokumentenarchiv MULTOS 我们采用了文件型号,包括马尔图图书馆采用的自动分类系统
Pub Date : 1900-01-01 DOI: 10.1007/978-3-642-72617-0_6
Helmut Eirund, Klaus Kreplin
{"title":"Dokumentenmodell und automatische Klassifikation im Bürodokumentenarchiv MULTOS","authors":"Helmut Eirund, Klaus Kreplin","doi":"10.1007/978-3-642-72617-0_6","DOIUrl":"https://doi.org/10.1007/978-3-642-72617-0_6","url":null,"abstract":"","PeriodicalId":421643,"journal":{"name":"Datenbanksysteme für Business, Technologie und Web","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128814521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Datenbanksysteme für Business, Technologie und Web
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1