首页 > 最新文献

Journal of Time Series Econometrics最新文献

英文 中文
Quasi Maximum Likelihood Estimation of Vector Multiplicative Error Model using the ECCC-GARCH Representation 使用 ECCC-GARCH 表示法对向量乘法误差模型进行准最大似然估计
IF 0.8 Q3 Economics, Econometrics and Finance Pub Date : 2024-01-03 DOI: 10.1515/jtse-2022-0018
Yongdeng Xu
Abstract We introduce an ECCC-GARCH representation for the vector Multiplicative Error Model (vMEM) that enables maximum likelihood estimation using the multivariate normal distribution. We show via Monte Carlo simulations that the QML estimator possesses desirable small sample properties (towards unbiasedness and efficiency). In the empirical application, we firstly use a two-dimensional vMEM for the squared return and realized volatility, which nests the High-frEquency-bAsed VolatilitY (HEAVY) and Realized GARCH model. We show that the Realized GARCH model is a more appropriate specification for the dynamics of the return-volatility relationship. The second empirical application is a four-dimensional vMEM for volatility spillover effects in the four European stock markets. The results confirm interdependence across European markets and the relative strength of volatility spillovers increases in the post-2010 turmoil periods.
摘要 我们介绍了矢量乘法误差模型(vMEM)的 ECCC-GARCH 表示法,它可以使用多元正态分布进行最大似然估计。我们通过蒙特卡罗模拟证明,QML 估计器具有理想的小样本特性(无偏性和效率)。在实证应用中,我们首先对收益平方和已实现波动率使用了二维 vMEM,其中嵌套了高频波动率(HEAVY)和已实现 GARCH 模型。我们的研究表明,实现 GARCH 模型是对收益率-波动率动态关系更恰当的描述。第二个实证应用是四维 vMEM,用于分析四个欧洲股票市场的波动溢出效应。结果证实了欧洲各市场之间的相互依存性,并且波动溢出效应的相对强度在 2010 年后的动荡时期有所增加。
{"title":"Quasi Maximum Likelihood Estimation of Vector Multiplicative Error Model using the ECCC-GARCH Representation","authors":"Yongdeng Xu","doi":"10.1515/jtse-2022-0018","DOIUrl":"https://doi.org/10.1515/jtse-2022-0018","url":null,"abstract":"Abstract We introduce an ECCC-GARCH representation for the vector Multiplicative Error Model (vMEM) that enables maximum likelihood estimation using the multivariate normal distribution. We show via Monte Carlo simulations that the QML estimator possesses desirable small sample properties (towards unbiasedness and efficiency). In the empirical application, we firstly use a two-dimensional vMEM for the squared return and realized volatility, which nests the High-frEquency-bAsed VolatilitY (HEAVY) and Realized GARCH model. We show that the Realized GARCH model is a more appropriate specification for the dynamics of the return-volatility relationship. The second empirical application is a four-dimensional vMEM for volatility spillover effects in the four European stock markets. The results confirm interdependence across European markets and the relative strength of volatility spillovers increases in the post-2010 turmoil periods.","PeriodicalId":42470,"journal":{"name":"Journal of Time Series Econometrics","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139119366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quasi Maximum Likelihood Estimation of Vector Multiplicative Error Model using the ECCC-GARCH Representation 使用 ECCC-GARCH 表示法对向量乘法误差模型进行准最大似然估计
IF 0.8 Q3 Economics, Econometrics and Finance Pub Date : 2024-01-03 DOI: 10.1515/jtse-2022-0018
Yongdeng Xu
Abstract We introduce an ECCC-GARCH representation for the vector Multiplicative Error Model (vMEM) that enables maximum likelihood estimation using the multivariate normal distribution. We show via Monte Carlo simulations that the QML estimator possesses desirable small sample properties (towards unbiasedness and efficiency). In the empirical application, we firstly use a two-dimensional vMEM for the squared return and realized volatility, which nests the High-frEquency-bAsed VolatilitY (HEAVY) and Realized GARCH model. We show that the Realized GARCH model is a more appropriate specification for the dynamics of the return-volatility relationship. The second empirical application is a four-dimensional vMEM for volatility spillover effects in the four European stock markets. The results confirm interdependence across European markets and the relative strength of volatility spillovers increases in the post-2010 turmoil periods.
摘要 我们介绍了矢量乘法误差模型(vMEM)的 ECCC-GARCH 表示法,它可以使用多元正态分布进行最大似然估计。我们通过蒙特卡罗模拟证明,QML 估计器具有理想的小样本特性(无偏性和效率)。在实证应用中,我们首先对收益平方和已实现波动率使用了二维 vMEM,其中嵌套了高频波动率(HEAVY)和已实现 GARCH 模型。我们的研究表明,实现 GARCH 模型是对收益率-波动率动态关系更恰当的描述。第二个实证应用是四维 vMEM,用于分析四个欧洲股票市场的波动溢出效应。结果证实了欧洲各市场之间的相互依存性,并且波动溢出效应的相对强度在 2010 年后的动荡时期有所增加。
{"title":"Quasi Maximum Likelihood Estimation of Vector Multiplicative Error Model using the ECCC-GARCH Representation","authors":"Yongdeng Xu","doi":"10.1515/jtse-2022-0018","DOIUrl":"https://doi.org/10.1515/jtse-2022-0018","url":null,"abstract":"Abstract We introduce an ECCC-GARCH representation for the vector Multiplicative Error Model (vMEM) that enables maximum likelihood estimation using the multivariate normal distribution. We show via Monte Carlo simulations that the QML estimator possesses desirable small sample properties (towards unbiasedness and efficiency). In the empirical application, we firstly use a two-dimensional vMEM for the squared return and realized volatility, which nests the High-frEquency-bAsed VolatilitY (HEAVY) and Realized GARCH model. We show that the Realized GARCH model is a more appropriate specification for the dynamics of the return-volatility relationship. The second empirical application is a four-dimensional vMEM for volatility spillover effects in the four European stock markets. The results confirm interdependence across European markets and the relative strength of volatility spillovers increases in the post-2010 turmoil periods.","PeriodicalId":42470,"journal":{"name":"Journal of Time Series Econometrics","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139120985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quasi Maximum Likelihood Estimation of Vector Multiplicative Error Model using the ECCC-GARCH Representation 使用 ECCC-GARCH 表示法对向量乘法误差模型进行准最大似然估计
IF 0.8 Q3 Economics, Econometrics and Finance Pub Date : 2024-01-03 DOI: 10.1515/jtse-2022-0018
Yongdeng Xu
Abstract We introduce an ECCC-GARCH representation for the vector Multiplicative Error Model (vMEM) that enables maximum likelihood estimation using the multivariate normal distribution. We show via Monte Carlo simulations that the QML estimator possesses desirable small sample properties (towards unbiasedness and efficiency). In the empirical application, we firstly use a two-dimensional vMEM for the squared return and realized volatility, which nests the High-frEquency-bAsed VolatilitY (HEAVY) and Realized GARCH model. We show that the Realized GARCH model is a more appropriate specification for the dynamics of the return-volatility relationship. The second empirical application is a four-dimensional vMEM for volatility spillover effects in the four European stock markets. The results confirm interdependence across European markets and the relative strength of volatility spillovers increases in the post-2010 turmoil periods.
摘要 我们介绍了矢量乘法误差模型(vMEM)的 ECCC-GARCH 表示法,它可以使用多元正态分布进行最大似然估计。我们通过蒙特卡罗模拟证明,QML 估计器具有理想的小样本特性(无偏性和效率)。在实证应用中,我们首先对收益平方和已实现波动率使用了二维 vMEM,其中嵌套了高频波动率(HEAVY)和已实现 GARCH 模型。我们的研究表明,实现 GARCH 模型是对收益率-波动率动态关系更恰当的描述。第二个实证应用是四维 vMEM,用于分析四个欧洲股票市场的波动溢出效应。结果证实了欧洲各市场之间的相互依存性,并且波动溢出效应的相对强度在 2010 年后的动荡时期有所增加。
{"title":"Quasi Maximum Likelihood Estimation of Vector Multiplicative Error Model using the ECCC-GARCH Representation","authors":"Yongdeng Xu","doi":"10.1515/jtse-2022-0018","DOIUrl":"https://doi.org/10.1515/jtse-2022-0018","url":null,"abstract":"Abstract We introduce an ECCC-GARCH representation for the vector Multiplicative Error Model (vMEM) that enables maximum likelihood estimation using the multivariate normal distribution. We show via Monte Carlo simulations that the QML estimator possesses desirable small sample properties (towards unbiasedness and efficiency). In the empirical application, we firstly use a two-dimensional vMEM for the squared return and realized volatility, which nests the High-frEquency-bAsed VolatilitY (HEAVY) and Realized GARCH model. We show that the Realized GARCH model is a more appropriate specification for the dynamics of the return-volatility relationship. The second empirical application is a four-dimensional vMEM for volatility spillover effects in the four European stock markets. The results confirm interdependence across European markets and the relative strength of volatility spillovers increases in the post-2010 turmoil periods.","PeriodicalId":42470,"journal":{"name":"Journal of Time Series Econometrics","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139121106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quasi Maximum Likelihood Estimation of Vector Multiplicative Error Model using the ECCC-GARCH Representation 使用 ECCC-GARCH 表示法对向量乘法误差模型进行准最大似然估计
IF 0.8 Q3 Economics, Econometrics and Finance Pub Date : 2024-01-03 DOI: 10.1515/jtse-2022-0018
Yongdeng Xu
Abstract We introduce an ECCC-GARCH representation for the vector Multiplicative Error Model (vMEM) that enables maximum likelihood estimation using the multivariate normal distribution. We show via Monte Carlo simulations that the QML estimator possesses desirable small sample properties (towards unbiasedness and efficiency). In the empirical application, we firstly use a two-dimensional vMEM for the squared return and realized volatility, which nests the High-frEquency-bAsed VolatilitY (HEAVY) and Realized GARCH model. We show that the Realized GARCH model is a more appropriate specification for the dynamics of the return-volatility relationship. The second empirical application is a four-dimensional vMEM for volatility spillover effects in the four European stock markets. The results confirm interdependence across European markets and the relative strength of volatility spillovers increases in the post-2010 turmoil periods.
摘要 我们介绍了矢量乘法误差模型(vMEM)的 ECCC-GARCH 表示法,它可以使用多元正态分布进行最大似然估计。我们通过蒙特卡罗模拟证明,QML 估计器具有理想的小样本特性(无偏性和效率)。在实证应用中,我们首先对收益平方和已实现波动率使用了二维 vMEM,其中嵌套了高频波动率(HEAVY)和已实现 GARCH 模型。我们的研究表明,实现 GARCH 模型是对收益率-波动率动态关系更恰当的描述。第二个实证应用是四维 vMEM,用于分析四个欧洲股票市场的波动溢出效应。结果证实了欧洲各市场之间的相互依存性,并且波动溢出效应的相对强度在 2010 年后的动荡时期有所增加。
{"title":"Quasi Maximum Likelihood Estimation of Vector Multiplicative Error Model using the ECCC-GARCH Representation","authors":"Yongdeng Xu","doi":"10.1515/jtse-2022-0018","DOIUrl":"https://doi.org/10.1515/jtse-2022-0018","url":null,"abstract":"Abstract We introduce an ECCC-GARCH representation for the vector Multiplicative Error Model (vMEM) that enables maximum likelihood estimation using the multivariate normal distribution. We show via Monte Carlo simulations that the QML estimator possesses desirable small sample properties (towards unbiasedness and efficiency). In the empirical application, we firstly use a two-dimensional vMEM for the squared return and realized volatility, which nests the High-frEquency-bAsed VolatilitY (HEAVY) and Realized GARCH model. We show that the Realized GARCH model is a more appropriate specification for the dynamics of the return-volatility relationship. The second empirical application is a four-dimensional vMEM for volatility spillover effects in the four European stock markets. The results confirm interdependence across European markets and the relative strength of volatility spillovers increases in the post-2010 turmoil periods.","PeriodicalId":42470,"journal":{"name":"Journal of Time Series Econometrics","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139123871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quasi Maximum Likelihood Estimation of Vector Multiplicative Error Model using the ECCC-GARCH Representation 使用 ECCC-GARCH 表示法对向量乘法误差模型进行准最大似然估计
IF 0.8 Q3 Economics, Econometrics and Finance Pub Date : 2024-01-03 DOI: 10.1515/jtse-2022-0018
Yongdeng Xu
Abstract We introduce an ECCC-GARCH representation for the vector Multiplicative Error Model (vMEM) that enables maximum likelihood estimation using the multivariate normal distribution. We show via Monte Carlo simulations that the QML estimator possesses desirable small sample properties (towards unbiasedness and efficiency). In the empirical application, we firstly use a two-dimensional vMEM for the squared return and realized volatility, which nests the High-frEquency-bAsed VolatilitY (HEAVY) and Realized GARCH model. We show that the Realized GARCH model is a more appropriate specification for the dynamics of the return-volatility relationship. The second empirical application is a four-dimensional vMEM for volatility spillover effects in the four European stock markets. The results confirm interdependence across European markets and the relative strength of volatility spillovers increases in the post-2010 turmoil periods.
摘要 我们介绍了矢量乘法误差模型(vMEM)的 ECCC-GARCH 表示法,它可以使用多元正态分布进行最大似然估计。我们通过蒙特卡罗模拟证明,QML 估计器具有理想的小样本特性(无偏性和效率)。在实证应用中,我们首先对收益平方和已实现波动率使用了二维 vMEM,其中嵌套了高频波动率(HEAVY)和已实现 GARCH 模型。我们的研究表明,实现 GARCH 模型是对收益率-波动率动态关系更恰当的描述。第二个实证应用是四维 vMEM,用于分析四个欧洲股票市场的波动溢出效应。结果证实了欧洲各市场之间的相互依存性,并且波动溢出效应的相对强度在 2010 年后的动荡时期有所增加。
{"title":"Quasi Maximum Likelihood Estimation of Vector Multiplicative Error Model using the ECCC-GARCH Representation","authors":"Yongdeng Xu","doi":"10.1515/jtse-2022-0018","DOIUrl":"https://doi.org/10.1515/jtse-2022-0018","url":null,"abstract":"Abstract We introduce an ECCC-GARCH representation for the vector Multiplicative Error Model (vMEM) that enables maximum likelihood estimation using the multivariate normal distribution. We show via Monte Carlo simulations that the QML estimator possesses desirable small sample properties (towards unbiasedness and efficiency). In the empirical application, we firstly use a two-dimensional vMEM for the squared return and realized volatility, which nests the High-frEquency-bAsed VolatilitY (HEAVY) and Realized GARCH model. We show that the Realized GARCH model is a more appropriate specification for the dynamics of the return-volatility relationship. The second empirical application is a four-dimensional vMEM for volatility spillover effects in the four European stock markets. The results confirm interdependence across European markets and the relative strength of volatility spillovers increases in the post-2010 turmoil periods.","PeriodicalId":42470,"journal":{"name":"Journal of Time Series Econometrics","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139121693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quasi Maximum Likelihood Estimation of Vector Multiplicative Error Model using the ECCC-GARCH Representation 使用 ECCC-GARCH 表示法对向量乘法误差模型进行准最大似然估计
IF 0.8 Q3 Economics, Econometrics and Finance Pub Date : 2024-01-03 DOI: 10.1515/jtse-2022-0018
Yongdeng Xu
Abstract We introduce an ECCC-GARCH representation for the vector Multiplicative Error Model (vMEM) that enables maximum likelihood estimation using the multivariate normal distribution. We show via Monte Carlo simulations that the QML estimator possesses desirable small sample properties (towards unbiasedness and efficiency). In the empirical application, we firstly use a two-dimensional vMEM for the squared return and realized volatility, which nests the High-frEquency-bAsed VolatilitY (HEAVY) and Realized GARCH model. We show that the Realized GARCH model is a more appropriate specification for the dynamics of the return-volatility relationship. The second empirical application is a four-dimensional vMEM for volatility spillover effects in the four European stock markets. The results confirm interdependence across European markets and the relative strength of volatility spillovers increases in the post-2010 turmoil periods.
摘要 我们介绍了矢量乘法误差模型(vMEM)的 ECCC-GARCH 表示法,它可以使用多元正态分布进行最大似然估计。我们通过蒙特卡罗模拟证明,QML 估计器具有理想的小样本特性(无偏性和效率)。在实证应用中,我们首先对收益平方和已实现波动率使用了二维 vMEM,其中嵌套了高频波动率(HEAVY)和已实现 GARCH 模型。我们的研究表明,实现 GARCH 模型是对收益率-波动率动态关系更恰当的描述。第二个实证应用是四维 vMEM,用于分析四个欧洲股票市场的波动溢出效应。结果证实了欧洲各市场之间的相互依存性,并且波动溢出效应的相对强度在 2010 年后的动荡时期有所增加。
{"title":"Quasi Maximum Likelihood Estimation of Vector Multiplicative Error Model using the ECCC-GARCH Representation","authors":"Yongdeng Xu","doi":"10.1515/jtse-2022-0018","DOIUrl":"https://doi.org/10.1515/jtse-2022-0018","url":null,"abstract":"Abstract We introduce an ECCC-GARCH representation for the vector Multiplicative Error Model (vMEM) that enables maximum likelihood estimation using the multivariate normal distribution. We show via Monte Carlo simulations that the QML estimator possesses desirable small sample properties (towards unbiasedness and efficiency). In the empirical application, we firstly use a two-dimensional vMEM for the squared return and realized volatility, which nests the High-frEquency-bAsed VolatilitY (HEAVY) and Realized GARCH model. We show that the Realized GARCH model is a more appropriate specification for the dynamics of the return-volatility relationship. The second empirical application is a four-dimensional vMEM for volatility spillover effects in the four European stock markets. The results confirm interdependence across European markets and the relative strength of volatility spillovers increases in the post-2010 turmoil periods.","PeriodicalId":42470,"journal":{"name":"Journal of Time Series Econometrics","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139121880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quasi Maximum Likelihood Estimation of Vector Multiplicative Error Model using the ECCC-GARCH Representation 使用 ECCC-GARCH 表示法对向量乘法误差模型进行准最大似然估计
IF 0.8 Q3 Economics, Econometrics and Finance Pub Date : 2024-01-03 DOI: 10.1515/jtse-2022-0018
Yongdeng Xu
Abstract We introduce an ECCC-GARCH representation for the vector Multiplicative Error Model (vMEM) that enables maximum likelihood estimation using the multivariate normal distribution. We show via Monte Carlo simulations that the QML estimator possesses desirable small sample properties (towards unbiasedness and efficiency). In the empirical application, we firstly use a two-dimensional vMEM for the squared return and realized volatility, which nests the High-frEquency-bAsed VolatilitY (HEAVY) and Realized GARCH model. We show that the Realized GARCH model is a more appropriate specification for the dynamics of the return-volatility relationship. The second empirical application is a four-dimensional vMEM for volatility spillover effects in the four European stock markets. The results confirm interdependence across European markets and the relative strength of volatility spillovers increases in the post-2010 turmoil periods.
摘要 我们介绍了矢量乘法误差模型(vMEM)的 ECCC-GARCH 表示法,它可以使用多元正态分布进行最大似然估计。我们通过蒙特卡罗模拟证明,QML 估计器具有理想的小样本特性(无偏性和效率)。在实证应用中,我们首先对收益平方和已实现波动率使用了二维 vMEM,其中嵌套了高频波动率(HEAVY)和已实现 GARCH 模型。我们的研究表明,实现 GARCH 模型是对收益率-波动率动态关系更恰当的描述。第二个实证应用是四维 vMEM,用于分析四个欧洲股票市场的波动溢出效应。结果证实了欧洲各市场之间的相互依存性,并且波动溢出效应的相对强度在 2010 年后的动荡时期有所增加。
{"title":"Quasi Maximum Likelihood Estimation of Vector Multiplicative Error Model using the ECCC-GARCH Representation","authors":"Yongdeng Xu","doi":"10.1515/jtse-2022-0018","DOIUrl":"https://doi.org/10.1515/jtse-2022-0018","url":null,"abstract":"Abstract We introduce an ECCC-GARCH representation for the vector Multiplicative Error Model (vMEM) that enables maximum likelihood estimation using the multivariate normal distribution. We show via Monte Carlo simulations that the QML estimator possesses desirable small sample properties (towards unbiasedness and efficiency). In the empirical application, we firstly use a two-dimensional vMEM for the squared return and realized volatility, which nests the High-frEquency-bAsed VolatilitY (HEAVY) and Realized GARCH model. We show that the Realized GARCH model is a more appropriate specification for the dynamics of the return-volatility relationship. The second empirical application is a four-dimensional vMEM for volatility spillover effects in the four European stock markets. The results confirm interdependence across European markets and the relative strength of volatility spillovers increases in the post-2010 turmoil periods.","PeriodicalId":42470,"journal":{"name":"Journal of Time Series Econometrics","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139117974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quasi Maximum Likelihood Estimation of Vector Multiplicative Error Model using the ECCC-GARCH Representation 使用 ECCC-GARCH 表示法对向量乘法误差模型进行准最大似然估计
IF 0.8 Q3 Economics, Econometrics and Finance Pub Date : 2024-01-03 DOI: 10.1515/jtse-2022-0018
Yongdeng Xu
Abstract We introduce an ECCC-GARCH representation for the vector Multiplicative Error Model (vMEM) that enables maximum likelihood estimation using the multivariate normal distribution. We show via Monte Carlo simulations that the QML estimator possesses desirable small sample properties (towards unbiasedness and efficiency). In the empirical application, we firstly use a two-dimensional vMEM for the squared return and realized volatility, which nests the High-frEquency-bAsed VolatilitY (HEAVY) and Realized GARCH model. We show that the Realized GARCH model is a more appropriate specification for the dynamics of the return-volatility relationship. The second empirical application is a four-dimensional vMEM for volatility spillover effects in the four European stock markets. The results confirm interdependence across European markets and the relative strength of volatility spillovers increases in the post-2010 turmoil periods.
摘要 我们介绍了矢量乘法误差模型(vMEM)的 ECCC-GARCH 表示法,它可以使用多元正态分布进行最大似然估计。我们通过蒙特卡罗模拟证明,QML 估计器具有理想的小样本特性(无偏性和效率)。在实证应用中,我们首先对收益平方和已实现波动率使用了二维 vMEM,其中嵌套了高频波动率(HEAVY)和已实现 GARCH 模型。我们的研究表明,实现 GARCH 模型是对收益率-波动率动态关系更恰当的描述。第二个实证应用是四维 vMEM,用于分析四个欧洲股票市场的波动溢出效应。结果证实了欧洲各市场之间的相互依存性,并且波动溢出效应的相对强度在 2010 年后的动荡时期有所增加。
{"title":"Quasi Maximum Likelihood Estimation of Vector Multiplicative Error Model using the ECCC-GARCH Representation","authors":"Yongdeng Xu","doi":"10.1515/jtse-2022-0018","DOIUrl":"https://doi.org/10.1515/jtse-2022-0018","url":null,"abstract":"Abstract We introduce an ECCC-GARCH representation for the vector Multiplicative Error Model (vMEM) that enables maximum likelihood estimation using the multivariate normal distribution. We show via Monte Carlo simulations that the QML estimator possesses desirable small sample properties (towards unbiasedness and efficiency). In the empirical application, we firstly use a two-dimensional vMEM for the squared return and realized volatility, which nests the High-frEquency-bAsed VolatilitY (HEAVY) and Realized GARCH model. We show that the Realized GARCH model is a more appropriate specification for the dynamics of the return-volatility relationship. The second empirical application is a four-dimensional vMEM for volatility spillover effects in the four European stock markets. The results confirm interdependence across European markets and the relative strength of volatility spillovers increases in the post-2010 turmoil periods.","PeriodicalId":42470,"journal":{"name":"Journal of Time Series Econometrics","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139124156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quasi Maximum Likelihood Estimation of Vector Multiplicative Error Model using the ECCC-GARCH Representation 使用 ECCC-GARCH 表示法对向量乘法误差模型进行准最大似然估计
IF 0.8 Q3 Economics, Econometrics and Finance Pub Date : 2024-01-03 DOI: 10.1515/jtse-2022-0018
Yongdeng Xu
Abstract We introduce an ECCC-GARCH representation for the vector Multiplicative Error Model (vMEM) that enables maximum likelihood estimation using the multivariate normal distribution. We show via Monte Carlo simulations that the QML estimator possesses desirable small sample properties (towards unbiasedness and efficiency). In the empirical application, we firstly use a two-dimensional vMEM for the squared return and realized volatility, which nests the High-frEquency-bAsed VolatilitY (HEAVY) and Realized GARCH model. We show that the Realized GARCH model is a more appropriate specification for the dynamics of the return-volatility relationship. The second empirical application is a four-dimensional vMEM for volatility spillover effects in the four European stock markets. The results confirm interdependence across European markets and the relative strength of volatility spillovers increases in the post-2010 turmoil periods.
摘要 我们介绍了矢量乘法误差模型(vMEM)的 ECCC-GARCH 表示法,它可以使用多元正态分布进行最大似然估计。我们通过蒙特卡罗模拟证明,QML 估计器具有理想的小样本特性(无偏性和效率)。在实证应用中,我们首先对收益平方和已实现波动率使用了二维 vMEM,其中嵌套了高频波动率(HEAVY)和已实现 GARCH 模型。我们的研究表明,实现 GARCH 模型是对收益率-波动率动态关系更恰当的描述。第二个实证应用是四维 vMEM,用于分析四个欧洲股票市场的波动溢出效应。结果证实了欧洲各市场之间的相互依存性,并且波动溢出效应的相对强度在 2010 年后的动荡时期有所增加。
{"title":"Quasi Maximum Likelihood Estimation of Vector Multiplicative Error Model using the ECCC-GARCH Representation","authors":"Yongdeng Xu","doi":"10.1515/jtse-2022-0018","DOIUrl":"https://doi.org/10.1515/jtse-2022-0018","url":null,"abstract":"Abstract We introduce an ECCC-GARCH representation for the vector Multiplicative Error Model (vMEM) that enables maximum likelihood estimation using the multivariate normal distribution. We show via Monte Carlo simulations that the QML estimator possesses desirable small sample properties (towards unbiasedness and efficiency). In the empirical application, we firstly use a two-dimensional vMEM for the squared return and realized volatility, which nests the High-frEquency-bAsed VolatilitY (HEAVY) and Realized GARCH model. We show that the Realized GARCH model is a more appropriate specification for the dynamics of the return-volatility relationship. The second empirical application is a four-dimensional vMEM for volatility spillover effects in the four European stock markets. The results confirm interdependence across European markets and the relative strength of volatility spillovers increases in the post-2010 turmoil periods.","PeriodicalId":42470,"journal":{"name":"Journal of Time Series Econometrics","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139120017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quasi Maximum Likelihood Estimation of Vector Multiplicative Error Model using the ECCC-GARCH Representation 使用 ECCC-GARCH 表示法对向量乘法误差模型进行准最大似然估计
IF 0.8 Q3 Economics, Econometrics and Finance Pub Date : 2024-01-03 DOI: 10.1515/jtse-2022-0018
Yongdeng Xu
Abstract We introduce an ECCC-GARCH representation for the vector Multiplicative Error Model (vMEM) that enables maximum likelihood estimation using the multivariate normal distribution. We show via Monte Carlo simulations that the QML estimator possesses desirable small sample properties (towards unbiasedness and efficiency). In the empirical application, we firstly use a two-dimensional vMEM for the squared return and realized volatility, which nests the High-frEquency-bAsed VolatilitY (HEAVY) and Realized GARCH model. We show that the Realized GARCH model is a more appropriate specification for the dynamics of the return-volatility relationship. The second empirical application is a four-dimensional vMEM for volatility spillover effects in the four European stock markets. The results confirm interdependence across European markets and the relative strength of volatility spillovers increases in the post-2010 turmoil periods.
摘要 我们介绍了矢量乘法误差模型(vMEM)的 ECCC-GARCH 表示法,它可以使用多元正态分布进行最大似然估计。我们通过蒙特卡罗模拟证明,QML 估计器具有理想的小样本特性(无偏性和效率)。在实证应用中,我们首先对收益平方和已实现波动率使用了二维 vMEM,其中嵌套了高频波动率(HEAVY)和已实现 GARCH 模型。我们的研究表明,实现 GARCH 模型是对收益率-波动率动态关系更恰当的描述。第二个实证应用是四维 vMEM,用于分析四个欧洲股票市场的波动溢出效应。结果证实了欧洲各市场之间的相互依存性,并且波动溢出效应的相对强度在 2010 年后的动荡时期有所增加。
{"title":"Quasi Maximum Likelihood Estimation of Vector Multiplicative Error Model using the ECCC-GARCH Representation","authors":"Yongdeng Xu","doi":"10.1515/jtse-2022-0018","DOIUrl":"https://doi.org/10.1515/jtse-2022-0018","url":null,"abstract":"Abstract We introduce an ECCC-GARCH representation for the vector Multiplicative Error Model (vMEM) that enables maximum likelihood estimation using the multivariate normal distribution. We show via Monte Carlo simulations that the QML estimator possesses desirable small sample properties (towards unbiasedness and efficiency). In the empirical application, we firstly use a two-dimensional vMEM for the squared return and realized volatility, which nests the High-frEquency-bAsed VolatilitY (HEAVY) and Realized GARCH model. We show that the Realized GARCH model is a more appropriate specification for the dynamics of the return-volatility relationship. The second empirical application is a four-dimensional vMEM for volatility spillover effects in the four European stock markets. The results confirm interdependence across European markets and the relative strength of volatility spillovers increases in the post-2010 turmoil periods.","PeriodicalId":42470,"journal":{"name":"Journal of Time Series Econometrics","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139113195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Time Series Econometrics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1