Pub Date : 2023-09-30DOI: 10.21285/2227-2925-2023-13-3-454-460
I. N. Zubkov, V. V. Vysochinskaya, A. V. Kashina, S. M. Shishlyannikov
Nanoparticles based on biodegradable polymers find numerous applications in medicine as substances for intracellular drug delivery. Biosynthetically produced poly-3-hydroxyalkanoates (P3HAs) are among the most promising polymers of a lipid nature. In particular, polyhydroxybutyrate and polyhydroxyvalerate (scl-poly-3-hydroxyalkanoates) are widely used compounds, which are soluble only in organochlorine solvents. The use of organochlorine solvents faces several obstacles, since such chemicals may exhibit carcinogenic effects on the human body. However, the P3Has compounds consisting of hydroxybutyric acid residues with 6–14 carbon atoms in the main chain (mcl-poly-3-hydroxyalkanoates) are soluble not only in CHCl 3 or CH 2 Cl 2 but also in paraffins. These hydrocarbons, such as n-hexane, can be easily separated from aqueous solutions and are not known to exhibit high cytotoxicity. Consequently, the application of mcl-poly-3-hydroxyalkanoates can prevent the contamination of prepared dosage forms with organochlorine compounds. To this end, a methodology for the synthesis of mcl-P3HA nanoparticles stabilized with the Tween 80 nonionic surfactant was proposed. The ratio between the concentration of P3HA and the detergent was optimized. The present study revealed that the obtained particles have an average size of 200±90 nm and a zeta potential of -17±5 mV. Upon investigating the stability of the particle solution at 4 °C, it was found that the nanoparticles did not alter their size and zeta potential for 90 days. The fluorescence microscopy method showed that they could be delivered into BHK-21 cells within 2 h. In addition, the nanoparticles synthesized had no toxic effect on BHK-21 cells at a concentration of up to 200 μg/mL.
{"title":"Preparation of mcl-polyhydroxyalkanoate nanoparticles stabilized by the Tween 80 nonionic surfactant","authors":"I. N. Zubkov, V. V. Vysochinskaya, A. V. Kashina, S. M. Shishlyannikov","doi":"10.21285/2227-2925-2023-13-3-454-460","DOIUrl":"https://doi.org/10.21285/2227-2925-2023-13-3-454-460","url":null,"abstract":"Nanoparticles based on biodegradable polymers find numerous applications in medicine as substances for intracellular drug delivery. Biosynthetically produced poly-3-hydroxyalkanoates (P3HAs) are among the most promising polymers of a lipid nature. In particular, polyhydroxybutyrate and polyhydroxyvalerate (scl-poly-3-hydroxyalkanoates) are widely used compounds, which are soluble only in organochlorine solvents. The use of organochlorine solvents faces several obstacles, since such chemicals may exhibit carcinogenic effects on the human body. However, the P3Has compounds consisting of hydroxybutyric acid residues with 6–14 carbon atoms in the main chain (mcl-poly-3-hydroxyalkanoates) are soluble not only in CHCl 3 or CH 2 Cl 2 but also in paraffins. These hydrocarbons, such as n-hexane, can be easily separated from aqueous solutions and are not known to exhibit high cytotoxicity. Consequently, the application of mcl-poly-3-hydroxyalkanoates can prevent the contamination of prepared dosage forms with organochlorine compounds. To this end, a methodology for the synthesis of mcl-P3HA nanoparticles stabilized with the Tween 80 nonionic surfactant was proposed. The ratio between the concentration of P3HA and the detergent was optimized. The present study revealed that the obtained particles have an average size of 200±90 nm and a zeta potential of -17±5 mV. Upon investigating the stability of the particle solution at 4 °C, it was found that the nanoparticles did not alter their size and zeta potential for 90 days. The fluorescence microscopy method showed that they could be delivered into BHK-21 cells within 2 h. In addition, the nanoparticles synthesized had no toxic effect on BHK-21 cells at a concentration of up to 200 μg/mL.","PeriodicalId":43290,"journal":{"name":"Izvestiya Vuzov-Prikladnaya Khimiya i Biotekhnologiya","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136344483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-29DOI: 10.21285/2227-2925-2023-13-3-340-349
D. V. Minakov, Ya. V. Urazova, N. G. Bazarnova, S. L. Tikhonov, M. V. Minakova
The present study investigates the enzymatic activity and chemical composition of extracts obtained from the substrate mycelium of higher fungi. The investigated object is the biomass of fungi Piptoporus betulinus (substrate mycelium) gathered after solid-phase cultivation on natural substrate. The extracts were obtained using distilled water (pH=7.0), acetate (pH=4.7) and phosphate (pH=7.4) buffers, and Mcllvaine buffer (pH=4.0). Milk-clotting, proteolytic, cellulosolytic and lipolytic activity, as well as protein content, were determined in both aqueous or buffer extracts. As a result, the values of cellulosolytic (3.75–3.90 units/g), lipolytic (40.00–44.24 units/g) and milk-clotting (65.80–66.60 units/mL) activity of the substrate mycelium was determined. These values differ slightly in the extracts prepared on distilled water and buffers. Moreover, the concentration of protein substances in the native aqueous extract from the substrate mycelium of P. betulinus was 14.50 mg/mL. The values of proteolytic activity varied from 0.22 to 0.78 units/mL. Distilled water was found to be the most effective solvent for achieving high values of milk-clotting activity. Extract purification by microfiltration or with bentonite leads to a significant decrease in protein concentration (up to 5.90 mg/mL), cellulose(up to 1.40 units/g), lipo(up to 5.30 units/g), and proteolytic (up to 0.11 units/mL) activity, and an increase in milk-clotting activity values (up to 285.80 units/mL). The bentonite sorbs cellulosolytic, lipolytic, and non-specific proteolytic enzymes, resulting in a noticeable increase in the value of milk-clotting activity. In the aqueous extract of P. betulinus fungi, a high ratio of milk-clotting to proteolytic activity was found with a value of 2598.20. This may lead to an increased yield and improvement of the organoleptic properties of cheese and its storage period.
{"title":"Enzymatic activity of extracts from higher fungi for manufacturing fermented dairy products","authors":"D. V. Minakov, Ya. V. Urazova, N. G. Bazarnova, S. L. Tikhonov, M. V. Minakova","doi":"10.21285/2227-2925-2023-13-3-340-349","DOIUrl":"https://doi.org/10.21285/2227-2925-2023-13-3-340-349","url":null,"abstract":"The present study investigates the enzymatic activity and chemical composition of extracts obtained from the substrate mycelium of higher fungi. The investigated object is the biomass of fungi Piptoporus betulinus (substrate mycelium) gathered after solid-phase cultivation on natural substrate. The extracts were obtained using distilled water (pH=7.0), acetate (pH=4.7) and phosphate (pH=7.4) buffers, and Mcllvaine buffer (pH=4.0). Milk-clotting, proteolytic, cellulosolytic and lipolytic activity, as well as protein content, were determined in both aqueous or buffer extracts. As a result, the values of cellulosolytic (3.75–3.90 units/g), lipolytic (40.00–44.24 units/g) and milk-clotting (65.80–66.60 units/mL) activity of the substrate mycelium was determined. These values differ slightly in the extracts prepared on distilled water and buffers. Moreover, the concentration of protein substances in the native aqueous extract from the substrate mycelium of P. betulinus was 14.50 mg/mL. The values of proteolytic activity varied from 0.22 to 0.78 units/mL. Distilled water was found to be the most effective solvent for achieving high values of milk-clotting activity. Extract purification by microfiltration or with bentonite leads to a significant decrease in protein concentration (up to 5.90 mg/mL), cellulose(up to 1.40 units/g), lipo(up to 5.30 units/g), and proteolytic (up to 0.11 units/mL) activity, and an increase in milk-clotting activity values (up to 285.80 units/mL). The bentonite sorbs cellulosolytic, lipolytic, and non-specific proteolytic enzymes, resulting in a noticeable increase in the value of milk-clotting activity. In the aqueous extract of P. betulinus fungi, a high ratio of milk-clotting to proteolytic activity was found with a value of 2598.20. This may lead to an increased yield and improvement of the organoleptic properties of cheese and its storage period.","PeriodicalId":43290,"journal":{"name":"Izvestiya Vuzov-Prikladnaya Khimiya i Biotekhnologiya","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135294381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-29DOI: 10.21285/2227-2925-2023-13-3-325-332
A. A. Chayka, N. S. Shaglaeva, G. V. Bozhenkov, V. V. Bayandin, E. V. Rudyakova, Yu. N. Ivanov
Polyetherimides (PEIs) are a class of structural polymers with the most successful combination of such essential properties for practical applications as high heat resistance, thermal stability, ultimate tensile strength, elastic modulus, good dielectric properties, and high chemical and radiation resistance. However, along with these advantages, PEIs are compounds with high softening and melting points, which complicates their processing into products. In recent decades, specialists have found numerous ways to decrease the glass transition temperature by increasing the flexibility of the main polymer chain. To this end, functional groups with a higher degree of rotation, such as isopropylidene, hexafluoroisopropylidene, 1,2-dichloroethylene, and other substituents, are introduced into the main polymer chain. Polyetherimide, whose precursors are 3(4)-nitrophthalic anhydride, m-phenylenediamine, and bisphenol A, was first produced by General Electric under the Ultem brand name and is currently believed to be one of the best-known engineering thermoplastics. In particular, two synthetic methods can be used to obtain such polyetherimides. The first technique uses a cyclization of poly(amidocarboxylic acid), which is obtained by the polycondensation of dianhydride of 2,2-bis-[4-(3,4-dicarboxyphenoxy)phenyl]propane and m-phenylenediamine. The second technique uses the polynitro substitution of 1,3-bis[N-(3-nitrophthalimido)]benzene and the dynatrium salt of bisphenol A. To date, the Russian scientific literature lacks reviews with detailed descriptions of known methods for the preparation of Ultem series polyetherimides. The present review generalizes and systematizes the available literature data regarding the synthesis of the Ultem series PEIs. In addition, this study describes preparation methods of soluble thermoplastic polyetherimides of this series, available synthesis methods of initial monomers with reaction yields, and physical characteristics of such polymers.
{"title":"Synthesis of the Ultem series polyetherimides","authors":"A. A. Chayka, N. S. Shaglaeva, G. V. Bozhenkov, V. V. Bayandin, E. V. Rudyakova, Yu. N. Ivanov","doi":"10.21285/2227-2925-2023-13-3-325-332","DOIUrl":"https://doi.org/10.21285/2227-2925-2023-13-3-325-332","url":null,"abstract":"Polyetherimides (PEIs) are a class of structural polymers with the most successful combination of such essential properties for practical applications as high heat resistance, thermal stability, ultimate tensile strength, elastic modulus, good dielectric properties, and high chemical and radiation resistance. However, along with these advantages, PEIs are compounds with high softening and melting points, which complicates their processing into products. In recent decades, specialists have found numerous ways to decrease the glass transition temperature by increasing the flexibility of the main polymer chain. To this end, functional groups with a higher degree of rotation, such as isopropylidene, hexafluoroisopropylidene, 1,2-dichloroethylene, and other substituents, are introduced into the main polymer chain. Polyetherimide, whose precursors are 3(4)-nitrophthalic anhydride, m-phenylenediamine, and bisphenol A, was first produced by General Electric under the Ultem brand name and is currently believed to be one of the best-known engineering thermoplastics. In particular, two synthetic methods can be used to obtain such polyetherimides. The first technique uses a cyclization of poly(amidocarboxylic acid), which is obtained by the polycondensation of dianhydride of 2,2-bis-[4-(3,4-dicarboxyphenoxy)phenyl]propane and m-phenylenediamine. The second technique uses the polynitro substitution of 1,3-bis[N-(3-nitrophthalimido)]benzene and the dynatrium salt of bisphenol A. To date, the Russian scientific literature lacks reviews with detailed descriptions of known methods for the preparation of Ultem series polyetherimides. The present review generalizes and systematizes the available literature data regarding the synthesis of the Ultem series PEIs. In addition, this study describes preparation methods of soluble thermoplastic polyetherimides of this series, available synthesis methods of initial monomers with reaction yields, and physical characteristics of such polymers.","PeriodicalId":43290,"journal":{"name":"Izvestiya Vuzov-Prikladnaya Khimiya i Biotekhnologiya","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135294511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-29DOI: 10.21285/2227-2925-2023-13-3-333-339
V. E. Vakhabova, K. G. Guliev
For the first time, p-aminopyridine methacrylate was synthesized by a reaction between p-aminopyridine and methacryloyl chloride. IR and NMR spectroscopy сonfirmed the obtained compound structure. Radical homopolymerization of synthesized p-aminopyridine methacrylate was carried out either in bulk or in benzene solution (initiator – AIBN). The study of radical polymerization regularities of p-aminopyridine methacrylate discovered no side reactions and induction period of the reported process under the created conditions with a maximum yield of 92%. It was found that p-aminopyridine methacrylate is a more reactive monomer in radical polymerization as compared to methyl methacrylate. The structure of the obtained monomer and polymer was investigated by IR and NMR spectroscopy. Based on these data, the polymerization proceeds by a double bond, with substituents in the side macro chain remaining unreacted. The study of the synthesized monomer polymerization in the bulk indicated the presence of the gel effect. The autoacceleration begins at ~25% monomer conversion during the polymerization process, which agrees with the literature data. It was discovered that the polymerization of p-aminopyridine methacrylate proceeds at a rate higher than that of methyl methacrylate. This observation is likely to be connected with the substituent contribution to the electronic state of the entire monomer molecule. Hence, the electron density of the vinyl group changes and the growing radical becomes stabilized with the substituent –M-effect. The polymer synthesized possesses high antimicrobial properties.
{"title":"Synthesis, homopolymerization and properties of p-aminopyridine methacrylate","authors":"V. E. Vakhabova, K. G. Guliev","doi":"10.21285/2227-2925-2023-13-3-333-339","DOIUrl":"https://doi.org/10.21285/2227-2925-2023-13-3-333-339","url":null,"abstract":"For the first time, p-aminopyridine methacrylate was synthesized by a reaction between p-aminopyridine and methacryloyl chloride. IR and NMR spectroscopy сonfirmed the obtained compound structure. Radical homopolymerization of synthesized p-aminopyridine methacrylate was carried out either in bulk or in benzene solution (initiator – AIBN). The study of radical polymerization regularities of p-aminopyridine methacrylate discovered no side reactions and induction period of the reported process under the created conditions with a maximum yield of 92%. It was found that p-aminopyridine methacrylate is a more reactive monomer in radical polymerization as compared to methyl methacrylate. The structure of the obtained monomer and polymer was investigated by IR and NMR spectroscopy. Based on these data, the polymerization proceeds by a double bond, with substituents in the side macro chain remaining unreacted. The study of the synthesized monomer polymerization in the bulk indicated the presence of the gel effect. The autoacceleration begins at ~25% monomer conversion during the polymerization process, which agrees with the literature data. It was discovered that the polymerization of p-aminopyridine methacrylate proceeds at a rate higher than that of methyl methacrylate. This observation is likely to be connected with the substituent contribution to the electronic state of the entire monomer molecule. Hence, the electron density of the vinyl group changes and the growing radical becomes stabilized with the substituent –M-effect. The polymer synthesized possesses high antimicrobial properties.","PeriodicalId":43290,"journal":{"name":"Izvestiya Vuzov-Prikladnaya Khimiya i Biotekhnologiya","volume":"442 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135294382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-29DOI: 10.21285/2227-2925-2023-13-3-350-358
O. V. Markova, S. R. Garipova, L. I. Pusenkova
The effectiveness of crop inoculation using growth-stimulating bacteria can depend on the plant variety and environmental conditions. The reactions of three-week-old plants of the Ufimskaya and Zolotistaya green bean varieties to inoculation with strains 26D and 10-4 in normal conditions and under stress (1% NaCl 48 h) were analysed. Although the Zolotistaya variety formed less biomass and leaf area, it surpassed the Ufimskaya variety in terms of chlorophyll and root water content, as well as reacting to stress by reducing the content of photosynthetic pigments and root water content. Inoculation contributed to the preservation of these indicators at the level of non–stressed plants: the positive effect of strain 26D was expressed in the effect on the composition of pigments, while that of strain 10-4 was expressed in the hydration of roots. Under stress, the Ufinskaya variety improved the water status of the roots, on which inoculation had a weak or negative effect; however, the decrease in the level of synthetic pigments under stress was compensated by inoculation with both strains. According to the biomass of three-week-old plants, the Zolotistaya variety was shown to respond positively to inoculation with both strains both normally and under stress, while the Ufimskaya variety tended to react negatively to inoculation with strain 26D; under stress, the effect of inoculation with both strains was positive. Compared with the stress-induced control, the malondialdehyde content in the roots of inoculated plants of both varieties decreased in comparison with that of the uninoculated control both in normal conditions and under stress. The revealed differences in plant reactions to inoculation serve as a basis for further analysis of the effectiveness of variety-strain combinations of symbiotic partners.
{"title":"Variety-strain interaction specificity of <i>Bacillus subtilis</i> with salt-stressed <i>Phaseolus vulgaris</i> L. plants","authors":"O. V. Markova, S. R. Garipova, L. I. Pusenkova","doi":"10.21285/2227-2925-2023-13-3-350-358","DOIUrl":"https://doi.org/10.21285/2227-2925-2023-13-3-350-358","url":null,"abstract":"The effectiveness of crop inoculation using growth-stimulating bacteria can depend on the plant variety and environmental conditions. The reactions of three-week-old plants of the Ufimskaya and Zolotistaya green bean varieties to inoculation with strains 26D and 10-4 in normal conditions and under stress (1% NaCl 48 h) were analysed. Although the Zolotistaya variety formed less biomass and leaf area, it surpassed the Ufimskaya variety in terms of chlorophyll and root water content, as well as reacting to stress by reducing the content of photosynthetic pigments and root water content. Inoculation contributed to the preservation of these indicators at the level of non–stressed plants: the positive effect of strain 26D was expressed in the effect on the composition of pigments, while that of strain 10-4 was expressed in the hydration of roots. Under stress, the Ufinskaya variety improved the water status of the roots, on which inoculation had a weak or negative effect; however, the decrease in the level of synthetic pigments under stress was compensated by inoculation with both strains. According to the biomass of three-week-old plants, the Zolotistaya variety was shown to respond positively to inoculation with both strains both normally and under stress, while the Ufimskaya variety tended to react negatively to inoculation with strain 26D; under stress, the effect of inoculation with both strains was positive. Compared with the stress-induced control, the malondialdehyde content in the roots of inoculated plants of both varieties decreased in comparison with that of the uninoculated control both in normal conditions and under stress. The revealed differences in plant reactions to inoculation serve as a basis for further analysis of the effectiveness of variety-strain combinations of symbiotic partners.","PeriodicalId":43290,"journal":{"name":"Izvestiya Vuzov-Prikladnaya Khimiya i Biotekhnologiya","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135294510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-02DOI: 10.21285/2227-2925-2023-13-2-220-227
A. V. Kovekhova, O. D. Arefieva, L. A. Zemnukhova, D. A. Samokhina
This paper presents the results of studying the inorganic components of sunflower stems. The test objects are the extracts obtained at different pH values of the medium and ash samples before and after treatment of stems with water, acid, and alkali. The results show that the nature of the extractant has a negligible effect on the yield of extractive substances from the crushed stems. According to atomic absorption analysis, the main ions in extracts obtained in different media are potassium, calcium, magnesium, and sodium ions. The mass fraction of ash after treatment of stems with solutions at different pH values varies from 0.5 to 5.2%. The lowest ash yield is characterized by a sample of stems after acid extraction. According to energy dispersive X-ray fluorescence spectroscopy, all ash samples contain mainly K, Ca, Mg, and P compounds. The ash components of the core and outer part of the stem were also studied in comparison with the original sample. The ash content of the stem core (9.3%) is higher than that of the outer shell (7.4%). The IR spectroscopy shows that the nature of band splitting in the IR spectra of the ash samples practically does not depend on the stem part and the pretreatment of raw materials at different pH values. Absorption bands characteristic of carbonates and silicates are observed in the IR spectra of the stem ash. According to X-ray diffraction analysis, the studied ash samples are in a crystalline state.
{"title":"Inorganic compounds of sunflower stems","authors":"A. V. Kovekhova, O. D. Arefieva, L. A. Zemnukhova, D. A. Samokhina","doi":"10.21285/2227-2925-2023-13-2-220-227","DOIUrl":"https://doi.org/10.21285/2227-2925-2023-13-2-220-227","url":null,"abstract":"This paper presents the results of studying the inorganic components of sunflower stems. The test objects are the extracts obtained at different pH values of the medium and ash samples before and after treatment of stems with water, acid, and alkali. The results show that the nature of the extractant has a negligible effect on the yield of extractive substances from the crushed stems. According to atomic absorption analysis, the main ions in extracts obtained in different media are potassium, calcium, magnesium, and sodium ions. The mass fraction of ash after treatment of stems with solutions at different pH values varies from 0.5 to 5.2%. The lowest ash yield is characterized by a sample of stems after acid extraction. According to energy dispersive X-ray fluorescence spectroscopy, all ash samples contain mainly K, Ca, Mg, and P compounds. The ash components of the core and outer part of the stem were also studied in comparison with the original sample. The ash content of the stem core (9.3%) is higher than that of the outer shell (7.4%). The IR spectroscopy shows that the nature of band splitting in the IR spectra of the ash samples practically does not depend on the stem part and the pretreatment of raw materials at different pH values. Absorption bands characteristic of carbonates and silicates are observed in the IR spectra of the stem ash. According to X-ray diffraction analysis, the studied ash samples are in a crystalline state.","PeriodicalId":43290,"journal":{"name":"Izvestiya Vuzov-Prikladnaya Khimiya i Biotekhnologiya","volume":"646 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135800555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}