首页 > 最新文献

Statistical Inference for Stochastic Processes最新文献

英文 中文
Guided simulation of conditioned chemical reaction networks. 条件化学反应网络的引导模拟。
IF 0.7 Q3 STATISTICS & PROBABILITY Pub Date : 2025-01-01 Epub Date: 2025-05-17 DOI: 10.1007/s11203-025-09326-9
Marc Corstanje, Frank van der Meulen

Let X be a chemical reaction process, modeled as a multi-dimensional continuous-time jump process. Assume that at given times 0 < t 1 < < t n , linear combinations v i = L i X ( t i ) , i = 1 , , n are observed for given matrices L i . We show how the process that is conditioned on hitting the states v 1 , , v n is obtained by a change of measure on the law of the unconditioned process. This results in an algorithm for obtaining weighted samples from the conditioned process. Our results are illustrated by numerical simulations.

设X为一个化学反应过程,建模为一个多维连续时间跳跃过程。假设在给定的0 t 1⋯t n时刻,对于给定的矩阵L i,观察到线性组合v i = L i X (ti), i = 1,⋯n。我们展示了以达到状态v1,⋯v n为条件的过程是如何通过对无条件过程定律的测度变化而获得的。这就产生了一种从条件过程中获得加权样本的算法。数值模拟表明了我们的结果。
{"title":"Guided simulation of conditioned chemical reaction networks.","authors":"Marc Corstanje, Frank van der Meulen","doi":"10.1007/s11203-025-09326-9","DOIUrl":"10.1007/s11203-025-09326-9","url":null,"abstract":"<p><p>Let <i>X</i> be a chemical reaction process, modeled as a multi-dimensional continuous-time jump process. Assume that at given times <math><mrow><mn>0</mn> <mo><</mo> <msub><mi>t</mi> <mn>1</mn></msub> <mo><</mo> <mo>⋯</mo> <mo><</mo> <msub><mi>t</mi> <mi>n</mi></msub> </mrow> </math> , linear combinations <math> <mrow><msub><mi>v</mi> <mi>i</mi></msub> <mo>=</mo> <msub><mi>L</mi> <mi>i</mi></msub> <mi>X</mi> <mrow><mo>(</mo> <msub><mi>t</mi> <mi>i</mi></msub> <mo>)</mo></mrow> <mo>,</mo> <mspace></mspace> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>⋯</mo> <mo>,</mo> <mi>n</mi></mrow> </math> are observed for given matrices <math><msub><mi>L</mi> <mi>i</mi></msub> </math> . We show how the process that is conditioned on hitting the states <math> <mrow><msub><mi>v</mi> <mn>1</mn></msub> <mo>,</mo> <mo>⋯</mo> <mo>,</mo> <msub><mi>v</mi> <mi>n</mi></msub> </mrow> </math> is obtained by a change of measure on the law of the unconditioned process. This results in an algorithm for obtaining weighted samples from the conditioned process. Our results are illustrated by numerical simulations.</p>","PeriodicalId":43294,"journal":{"name":"Statistical Inference for Stochastic Processes","volume":"28 2","pages":"8"},"PeriodicalIF":0.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12101079/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144144016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive exact recovery in sparse nonparametric models. 稀疏非参数模型的自适应精确恢复。
IF 1 Q3 STATISTICS & PROBABILITY Pub Date : 2025-01-01 Epub Date: 2025-10-27 DOI: 10.1007/s11203-025-09333-w
Natalia Stepanova, Marie Turcicova

We observe an unknown function of d variables f ( t ) , t [ 0 , 1 ] d , in the Gaussian white noise model of intensity ε > 0 . We assume that the function f is regular and that it is a sum of k-variate functions, where k varies from 1 to s ( 1 s d ). These functions are unknown to us and only a few of them are nonzero. In this article, we address the problem of identifying the nonzero components of f in the case when d = d ε as ε 0 and s is either fixed or s = s ε , s = o ( d ) as ε . This may be viewed as a variable selection problem. We derive the conditions when exact variable selection in the model at hand is possible and provide a selection procedure that achieves this type of selection. The procedure is adaptive to a degree of model sparsity described by the sparsity parameter β ( 0 , 1 ) . We also derive conditions that make the exact variable selection impossible. Our results augment previous work in this area.

在强度为ε > 0的高斯白噪声模型中,我们观察到d个变量f (t)的未知函数,t∈[0,1]d。我们假设函数f是正则函数,它是k变量函数的和,其中k从1到s变化(1≤s≤d)。这些函数是未知的,只有少数是非零的。在本文中,我们解决了当d = d ε→∞为ε→0且s是固定的或s = s ε→∞,s = o (d)为ε→∞时f的非零分量的辨识问题。这可以看作是一个变量选择问题。我们推导了在模型中可能进行精确变量选择的条件,并提供了实现这种选择的选择过程。该过程自适应于由稀疏度参数β∈(0,1)描述的模型稀疏度。我们还推导出使精确的变量选择不可能的条件。我们的结果加强了以前在这一领域的工作。
{"title":"Adaptive exact recovery in sparse nonparametric models.","authors":"Natalia Stepanova, Marie Turcicova","doi":"10.1007/s11203-025-09333-w","DOIUrl":"10.1007/s11203-025-09333-w","url":null,"abstract":"<p><p>We observe an unknown function of <i>d</i> variables <math><mrow><mi>f</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo></mrow> </math> , <math><mrow><mi>t</mi> <mo>∈</mo> <msup><mrow><mo>[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>]</mo></mrow> <mi>d</mi></msup> </mrow> </math> , in the Gaussian white noise model of intensity <math><mrow><mi>ε</mi> <mo>></mo> <mn>0</mn></mrow> </math> . We assume that the function <i>f</i> is regular and that it is a sum of <i>k</i>-variate functions, where <i>k</i> varies from 1 to <i>s</i> ( <math><mrow><mn>1</mn> <mo>≤</mo> <mi>s</mi> <mo>≤</mo> <mi>d</mi></mrow> </math> ). These functions are unknown to us and only a few of them are nonzero. In this article, we address the problem of identifying the nonzero components of <i>f</i> in the case when <math><mrow><mi>d</mi> <mo>=</mo> <msub><mi>d</mi> <mi>ε</mi></msub> <mo>→</mo> <mi>∞</mi></mrow> </math> as <math><mrow><mi>ε</mi> <mo>→</mo> <mn>0</mn></mrow> </math> and <i>s</i> is either fixed or <math><mrow><mi>s</mi> <mo>=</mo> <msub><mi>s</mi> <mi>ε</mi></msub> <mo>→</mo> <mi>∞</mi></mrow> </math> , <math><mrow><mi>s</mi> <mo>=</mo> <mi>o</mi> <mo>(</mo> <mi>d</mi> <mo>)</mo></mrow> </math> as <math><mrow><mi>ε</mi> <mo>→</mo> <mi>∞</mi></mrow> </math> . This may be viewed as a variable selection problem. We derive the conditions when exact variable selection in the model at hand is possible and provide a selection procedure that achieves this type of selection. The procedure is adaptive to a degree of model sparsity described by the sparsity parameter <math><mrow><mi>β</mi> <mo>∈</mo> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo></mrow> </math> . We also derive conditions that make the exact variable selection impossible. Our results augment previous work in this area.</p>","PeriodicalId":43294,"journal":{"name":"Statistical Inference for Stochastic Processes","volume":"28 3","pages":"15"},"PeriodicalIF":1.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12559153/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145402354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The distribution of the maximum likelihood estimates of the change point and their relation to random walks 变化点最大似然估计值的分布及其与随机游走的关系
IF 0.8 Q3 STATISTICS & PROBABILITY Pub Date : 2023-12-19 DOI: 10.1007/s11203-023-09304-z
S. Fotopoulos
{"title":"The distribution of the maximum likelihood estimates of the change point and their relation to random walks","authors":"S. Fotopoulos","doi":"10.1007/s11203-023-09304-z","DOIUrl":"https://doi.org/10.1007/s11203-023-09304-z","url":null,"abstract":"","PeriodicalId":43294,"journal":{"name":"Statistical Inference for Stochastic Processes","volume":" 397","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138960547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Weak convergence of the conditional U-statistics for locally stationary functional time series 局部静止函数时间序列条件 U 统计量的弱收敛性
IF 0.8 Q3 STATISTICS & PROBABILITY Pub Date : 2023-12-18 DOI: 10.1007/s11203-023-09305-y
Inass Soukarieh, S. Bouzebda
{"title":"Weak convergence of the conditional U-statistics for locally stationary functional time series","authors":"Inass Soukarieh, S. Bouzebda","doi":"10.1007/s11203-023-09305-y","DOIUrl":"https://doi.org/10.1007/s11203-023-09305-y","url":null,"abstract":"","PeriodicalId":43294,"journal":{"name":"Statistical Inference for Stochastic Processes","volume":" 19","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138995017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonparametric estimation for random effects models driven by fractional Brownian motion using Hermite polynomials 利用赫米特多项式对分数布朗运动驱动的随机效应模型进行非参数估计
IF 0.8 Q3 STATISTICS & PROBABILITY Pub Date : 2023-12-02 DOI: 10.1007/s11203-023-09302-1
Hamid El Maroufy, Souad Ichi, Mohamed El Omari, Yousri Slaoui
{"title":"Nonparametric estimation for random effects models driven by fractional Brownian motion using Hermite polynomials","authors":"Hamid El Maroufy, Souad Ichi, Mohamed El Omari, Yousri Slaoui","doi":"10.1007/s11203-023-09302-1","DOIUrl":"https://doi.org/10.1007/s11203-023-09302-1","url":null,"abstract":"","PeriodicalId":43294,"journal":{"name":"Statistical Inference for Stochastic Processes","volume":"115 49","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138607484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asymptotic expansion of an estimator for the Hurst coefficient 赫斯特系数估计量的渐近展开式
Q3 STATISTICS & PROBABILITY Pub Date : 2023-09-25 DOI: 10.1007/s11203-023-09298-8
Yuliya Mishura, Hayate Yamagishi, Nakahiro Yoshida
Abstract Asymptotic expansion is presented for an estimator of the Hurst coefficient of a fractional Brownian motion. We first derive the expansion formula of the principal term of the error of the estimator using a recently developed theory of asymptotic expansion of the distribution of Wiener functionals, and utilize the perturbation method on the obtained formula in order to calculate the expansion of the estimator. We also discuss some second-order modifications of the estimator. Numerical results show that the asymptotic expansion attains higher accuracy than the normal approximation.
摘要给出了分数阶布朗运动赫斯特系数估计量的渐近展开式。我们首先利用最近发展的Wiener泛函分布渐近展开理论,推导了估计量误差主项的展开式,并利用摄动法对得到的公式进行了估计量展开式的计算。我们还讨论了估计量的一些二阶修正。数值结果表明,渐近展开法比正态逼近法具有更高的精度。
{"title":"Asymptotic expansion of an estimator for the Hurst coefficient","authors":"Yuliya Mishura, Hayate Yamagishi, Nakahiro Yoshida","doi":"10.1007/s11203-023-09298-8","DOIUrl":"https://doi.org/10.1007/s11203-023-09298-8","url":null,"abstract":"Abstract Asymptotic expansion is presented for an estimator of the Hurst coefficient of a fractional Brownian motion. We first derive the expansion formula of the principal term of the error of the estimator using a recently developed theory of asymptotic expansion of the distribution of Wiener functionals, and utilize the perturbation method on the obtained formula in order to calculate the expansion of the estimator. We also discuss some second-order modifications of the estimator. Numerical results show that the asymptotic expansion attains higher accuracy than the normal approximation.","PeriodicalId":43294,"journal":{"name":"Statistical Inference for Stochastic Processes","volume":"37 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135815856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Second-order robustness for time series inference 时间序列推理的二阶鲁棒性
Q3 STATISTICS & PROBABILITY Pub Date : 2023-09-23 DOI: 10.1007/s11203-023-09296-w
Xiaofei Xu, Yan Liu, Masanobu Taniguchi
{"title":"Second-order robustness for time series inference","authors":"Xiaofei Xu, Yan Liu, Masanobu Taniguchi","doi":"10.1007/s11203-023-09296-w","DOIUrl":"https://doi.org/10.1007/s11203-023-09296-w","url":null,"abstract":"","PeriodicalId":43294,"journal":{"name":"Statistical Inference for Stochastic Processes","volume":"51 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135959840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Localization of two radioactive sources on the plane 平面上两个放射源的定位
Q3 STATISTICS & PROBABILITY Pub Date : 2023-09-19 DOI: 10.1007/s11203-023-09297-9
O Chernoyarov, S Dachian, C Farinetto, Yu Kutoyants
It is considered the problem of localization on the plane of two radioactive sources by K detectors. Each detector records a realization of inhomogeneous Poisson process and the intensity function of this process is a sum of a signal arriving from the sources and the constant Poisson noise of known intensity. The time of the beginning of emissions of two sources is known and the main problem is the estimation of the position of the sources. The properties of the MLE and Bayessian estimators are described in the asymptotics of large signals in three situations of different regularities of the fronts of the signals: smooth, cusp-type and change-point type.
研究了K探测器在两个放射源平面上的定位问题。每个探测器记录了一个非齐次泊松过程的实现,该过程的强度函数是来自源的信号与已知强度的恒定泊松噪声的和。两个源开始排放的时间是已知的,主要问题是对源位置的估计。讨论了大信号在平滑型、尖峰型和变点型三种不同信号前沿规律情况下的渐近性。
{"title":"Localization of two radioactive sources on the plane","authors":"O Chernoyarov, S Dachian, C Farinetto, Yu Kutoyants","doi":"10.1007/s11203-023-09297-9","DOIUrl":"https://doi.org/10.1007/s11203-023-09297-9","url":null,"abstract":"It is considered the problem of localization on the plane of two radioactive sources by K detectors. Each detector records a realization of inhomogeneous Poisson process and the intensity function of this process is a sum of a signal arriving from the sources and the constant Poisson noise of known intensity. The time of the beginning of emissions of two sources is known and the main problem is the estimation of the position of the sources. The properties of the MLE and Bayessian estimators are described in the asymptotics of large signals in three situations of different regularities of the fronts of the signals: smooth, cusp-type and change-point type.","PeriodicalId":43294,"journal":{"name":"Statistical Inference for Stochastic Processes","volume":"190 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135011358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inference in generalized exponential O–U processes with change-point 具有变点的广义指数O-U过程的推理
Q3 STATISTICS & PROBABILITY Pub Date : 2023-09-01 DOI: 10.1007/s11203-023-09293-z
Yunhong Lyu, Sévérien Nkurunziza
{"title":"Inference in generalized exponential O–U processes with change-point","authors":"Yunhong Lyu, Sévérien Nkurunziza","doi":"10.1007/s11203-023-09293-z","DOIUrl":"https://doi.org/10.1007/s11203-023-09293-z","url":null,"abstract":"","PeriodicalId":43294,"journal":{"name":"Statistical Inference for Stochastic Processes","volume":"56 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135098652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Cramér–von Mises test for a class of mean time dependent CHARN models with application to change-point detection 一类平均时间相关CHARN模型的cram<s:1> - von Mises检验及其在变点检测中的应用
IF 0.8 Q3 STATISTICS & PROBABILITY Pub Date : 2023-08-23 DOI: 10.1007/s11203-023-09295-x
J. Ngatchou-Wandji, Marwa Ltaifa
{"title":"A Cramér–von Mises test for a class of mean time dependent CHARN models with application to change-point detection","authors":"J. Ngatchou-Wandji, Marwa Ltaifa","doi":"10.1007/s11203-023-09295-x","DOIUrl":"https://doi.org/10.1007/s11203-023-09295-x","url":null,"abstract":"","PeriodicalId":43294,"journal":{"name":"Statistical Inference for Stochastic Processes","volume":"116 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88421773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Statistical Inference for Stochastic Processes
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1