首页 > 最新文献

Journal of Risk Model Validation最新文献

英文 中文
A prudent loss given default estimation for mortgages. II 考虑到抵押贷款的违约估计,这是一个谨慎的损失。2。
IF 0.7 4区 经济学 Q4 BUSINESS, FINANCE Pub Date : 2021-01-01 DOI: 10.21314/jrmv.2021.008
Bogie Ozdemir, Emma Huang
{"title":"A prudent loss given default estimation for mortgages. II","authors":"Bogie Ozdemir, Emma Huang","doi":"10.21314/jrmv.2021.008","DOIUrl":"https://doi.org/10.21314/jrmv.2021.008","url":null,"abstract":"","PeriodicalId":43447,"journal":{"name":"Journal of Risk Model Validation","volume":"51 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75556906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A pricing model with dynamic credit rating transition matrixes 具有动态信用评级转移矩阵的定价模型
IF 0.7 4区 经济学 Q4 BUSINESS, FINANCE Pub Date : 2021-01-01 DOI: 10.21314/jrmv.2021.007
Yun-Cheng Tsai,Sheng-Hsuan Lin,Yuh-Dauh Lyuu
{"title":"A pricing model with dynamic credit rating transition matrixes","authors":"Yun-Cheng Tsai,Sheng-Hsuan Lin,Yuh-Dauh Lyuu","doi":"10.21314/jrmv.2021.007","DOIUrl":"https://doi.org/10.21314/jrmv.2021.007","url":null,"abstract":"","PeriodicalId":43447,"journal":{"name":"Journal of Risk Model Validation","volume":" 55","pages":""},"PeriodicalIF":0.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138494479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of backtesting techniques on risk models with different horizons 不同视界风险模型的回测技术评价
IF 0.7 4区 经济学 Q4 BUSINESS, FINANCE Pub Date : 2021-01-01 DOI: 10.21314/jrmv.2021.011
Grigorios Kontaxis, I. Tsolas
{"title":"Evaluation of backtesting techniques on risk models with different horizons","authors":"Grigorios Kontaxis, I. Tsolas","doi":"10.21314/jrmv.2021.011","DOIUrl":"https://doi.org/10.21314/jrmv.2021.011","url":null,"abstract":"","PeriodicalId":43447,"journal":{"name":"Journal of Risk Model Validation","volume":"55 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83747620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
The value-at-risk of time-series momentum and contrarian trading strategies 时间序列动量和反向交易策略的风险价值
IF 0.7 4区 经济学 Q4 BUSINESS, FINANCE Pub Date : 2021-01-01 DOI: 10.21314/jrmv.2021.006
Keunbae Ahn,Jihye Park,KiHoon Hong
{"title":"The value-at-risk of time-series momentum and contrarian trading strategies","authors":"Keunbae Ahn,Jihye Park,KiHoon Hong","doi":"10.21314/jrmv.2021.006","DOIUrl":"https://doi.org/10.21314/jrmv.2021.006","url":null,"abstract":"","PeriodicalId":43447,"journal":{"name":"Journal of Risk Model Validation","volume":" 69","pages":""},"PeriodicalIF":0.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138494478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bifractal Receiver Operating Characteristic Curves: A Formula for Generating Receiver Operating Characteristic Curves in Credit-Scoring Contexts 分岔接收者工作特征曲线:信用评分环境下接收者工作特征曲线的生成公式
IF 0.7 4区 经济学 Q4 BUSINESS, FINANCE Pub Date : 2020-10-29 DOI: 10.21314/JRMV.2020.231
Błażej Kochański
This paper formulates a mathematical model for generating receiver operating characteristic (ROC) curves without underlying data. Credit scoring practitioners know that the Gini coefficient usually drops if it is only calculated on cases above the cutoff. This fact is not a mathematical necessity, however, as it is theoretically possible to get an ROC curve that keeps the same Gini coefficient no matter how big a share of lowest score cases are excluded from the calculation (a “right-hand” fractal ROC curve). Analogously, a left-hand fractal ROC curve would be a curve that keeps its Gini coefficient constant below any cutoff point. The model proposed here is a linear combination of left- and right-hand ROC curves. A bifractal ROC curve is drawn with just two parameters: one responsible for the shape of the curve and the other responsible for the area under the curve (a Gini coefficient). As is shown in this paper, most real-life credit-scoring ROC curves lie between the two fractal curves. In consequence, the Gini coefficient will be consistently lower when computed only on approved loans.
本文建立了一个数学模型,用于在没有基础数据的情况下生成接收器工作特性(ROC)曲线。信用评分从业者知道,如果只对超过临界值的情况进行计算,基尼系数通常会下降。然而,这一事实并不是数学上的必然,因为理论上可以得到一条保持相同基尼系数的ROC曲线,无论计算中排除了多大比例的最低分数情况(“右侧”分形ROC曲线)。类似地,左手分形ROC曲线将是在任何截止点以下保持基尼系数恒定的曲线。这里提出的模型是左ROC曲线和右ROC曲线的线性组合。双分形ROC曲线只使用两个参数绘制:一个参数负责曲线的形状,另一个参数则负责曲线下的面积(基尼系数)。如本文所示,大多数真实的信用评分ROC曲线位于两条分形曲线之间。因此,如果仅根据批准的贷款计算,基尼系数将一直较低。
{"title":"Bifractal Receiver Operating Characteristic Curves: A Formula for Generating Receiver Operating Characteristic Curves in Credit-Scoring Contexts","authors":"Błażej Kochański","doi":"10.21314/JRMV.2020.231","DOIUrl":"https://doi.org/10.21314/JRMV.2020.231","url":null,"abstract":"This paper formulates a mathematical model for generating receiver operating characteristic (ROC) curves without underlying data. Credit scoring practitioners know that the Gini coefficient usually drops if it is only calculated on cases above the cutoff. This fact is not a mathematical necessity, however, as it is theoretically possible to get an ROC curve that keeps the same Gini coefficient no matter how big a share of lowest score cases are excluded from the calculation (a “right-hand” fractal ROC curve). Analogously, a left-hand fractal ROC curve would be a curve that keeps its Gini coefficient constant below any cutoff point. The model proposed here is a linear combination of left- and right-hand ROC curves. A bifractal ROC curve is drawn with just two parameters: one responsible for the shape of the curve and the other responsible for the area under the curve (a Gini coefficient). As is shown in this paper, most real-life credit-scoring ROC curves lie between the two fractal curves. In consequence, the Gini coefficient will be consistently lower when computed only on approved loans.","PeriodicalId":43447,"journal":{"name":"Journal of Risk Model Validation","volume":"1 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2020-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49172892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Validation of index and benchmark assignment: adequacy of capturing tail risk 指数和基准分配的验证:捕捉尾部风险的充分性
IF 0.7 4区 经济学 Q4 BUSINESS, FINANCE Pub Date : 2019-10-31 DOI: 10.21314/jrmv.2019.214
Lukasz Prorokowski
{"title":"Validation of index and benchmark assignment: adequacy of capturing tail risk","authors":"Lukasz Prorokowski","doi":"10.21314/jrmv.2019.214","DOIUrl":"https://doi.org/10.21314/jrmv.2019.214","url":null,"abstract":"","PeriodicalId":43447,"journal":{"name":"Journal of Risk Model Validation","volume":"1 1","pages":"71-105"},"PeriodicalIF":0.7,"publicationDate":"2019-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88649407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Value-at-risk in the European energy market: a comparison of parametric, historical simulation and quantile regression value-at-risk 欧洲能源市场的风险价值:参数化、历史模拟和分位数回归风险价值的比较
IF 0.7 4区 经济学 Q4 BUSINESS, FINANCE Pub Date : 2019-10-29 DOI: 10.21314/jrmv.2019.213
Sjur Westgaard, Gisle Hoel Århus, M. Frydenberg
{"title":"Value-at-risk in the European energy market: a comparison of parametric, historical simulation and quantile regression value-at-risk","authors":"Sjur Westgaard, Gisle Hoel Århus, M. Frydenberg","doi":"10.21314/jrmv.2019.213","DOIUrl":"https://doi.org/10.21314/jrmv.2019.213","url":null,"abstract":"","PeriodicalId":43447,"journal":{"name":"Journal of Risk Model Validation","volume":"21 1","pages":"43-69"},"PeriodicalIF":0.7,"publicationDate":"2019-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75317458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Quantification of the estimation risk inherent in loss distribution approach models 量化损失分布方法模型中固有的估计风险
IF 0.7 4区 经济学 Q4 BUSINESS, FINANCE Pub Date : 2019-10-25 DOI: 10.21314/jrmv.2019.212
Kevin Panman, Liesl van Biljon, L. Haasbroek
{"title":"Quantification of the estimation risk inherent in loss distribution approach models","authors":"Kevin Panman, Liesl van Biljon, L. Haasbroek","doi":"10.21314/jrmv.2019.212","DOIUrl":"https://doi.org/10.21314/jrmv.2019.212","url":null,"abstract":"","PeriodicalId":43447,"journal":{"name":"Journal of Risk Model Validation","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2019-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43162317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A study on window-size selection for threshold and bootstrap value-at-risk models 阈值和自举风险值模型的窗口大小选择研究
IF 0.7 4区 经济学 Q4 BUSINESS, FINANCE Pub Date : 2019-10-17 DOI: 10.21314/jrmv.2019.211
Anri Smith, Chun-Kai Huang
This paper investigates the effects of window size selection on various models for Value-at-Risk (VaR) forecasting using high performance computing. Subsequently, automated procedures using change-point analysis for optimal window size selection are proposed. In particular, stationary bootstrapping and the peaks-over-threshold methods are utilized for the rolling daily VaR estimation and are contrasted with the classical conditional Gaussian model. It is evidenced that change-point procedures can, on average, result in more adequate risk predictions than a predetermined fixed window size. The data sets analyzed include indices across 5 continents, i.e., the Dow Jones Industrial Average Index (DJI), the Financial Times Stock Exchange 100 Index (UKX), the NIKKEI Top 225 Index (NKY), the Johannesburg Stock Exchange Top 40 Index (JSE Top40), the Ibovespa Brazil Sao Paulo Stock Exchange All Index (IBOV), and the Bombay Stock Exchange Top 500 Index (BSE 500).
本文研究了窗口大小选择对使用高性能计算进行风险值(VaR)预测的各种模型的影响。随后,提出了使用变化点分析进行最佳窗口大小选择的自动化程序。特别地,平稳自举和峰值过阈值方法被用于滚动每日VaR估计,并与经典的条件高斯模型进行了对比。事实证明,与预先确定的固定窗口大小相比,变化点程序平均可以产生更充分的风险预测。分析的数据集包括五大洲的指数,即道琼斯工业平均指数(DJI)、英国《金融时报》证券交易所100指数(UKX)、日经225强指数(NKY)、约翰内斯堡证券交易所40强指数(JSE Top40)、巴西圣保罗证券交易所IBOV指数和孟买证券交易所500强指数(BSE 500)。
{"title":"A study on window-size selection for threshold and bootstrap value-at-risk models","authors":"Anri Smith, Chun-Kai Huang","doi":"10.21314/jrmv.2019.211","DOIUrl":"https://doi.org/10.21314/jrmv.2019.211","url":null,"abstract":"This paper investigates the effects of window size selection on various models for Value-at-Risk (VaR) forecasting using high performance computing. Subsequently, automated procedures using change-point analysis for optimal window size selection are proposed. In particular, stationary bootstrapping and the peaks-over-threshold methods are utilized for the rolling daily VaR estimation and are contrasted with the classical conditional Gaussian model. It is evidenced that change-point procedures can, on average, result in more adequate risk predictions than a predetermined fixed window size. The data sets analyzed include indices across 5 continents, i.e., the Dow Jones Industrial Average Index (DJI), the Financial Times Stock Exchange 100 Index (UKX), the NIKKEI Top 225 Index (NKY), the Johannesburg Stock Exchange Top 40 Index (JSE Top40), the Ibovespa Brazil Sao Paulo Stock Exchange All Index (IBOV), and the Bombay Stock Exchange Top 500 Index (BSE 500).","PeriodicalId":43447,"journal":{"name":"Journal of Risk Model Validation","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2019-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47743468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Beyond the Contract: Client Behavior from Origination to Default as the New Set of the Loss Given Default Risk Drivers 合同之外:客户行为从起源到违约是一组新的违约风险驱动因素
IF 0.7 4区 经济学 Q4 BUSINESS, FINANCE Pub Date : 2019-10-07 DOI: 10.21314/JRMV.2020.234
Wojciech Starosta
Modeling loss given default has increased in popularity as it has become a crucial parameter for establishing capital buffers under Basel II and III and for calculating the impairment of financial assets under the International Financial Reporting Standard 9. The most recent literature on this topic focuses mainly on estimation methods and less on the variables used to explain the variability in loss given default. In this paper, we expand this part of the modeling process by constructing a set of client-behavior-based predictors that can be used to construct more precise models, and we investigate the economic justifications empirically to examine their potential usage. The main novelty introduced in this paper is the connection between loss given default and the behavior of the contract owner, not just the contract itself. This approach results in the reduction of the values of selected error measures and progressively improves the forecasting ability. The effect is more visible in a parametric method (fractional regression) than in a nonparametric method (regression tree). Our findings support incorporating client-oriented information into loss given default models.
违约损失建模越来越受欢迎,因为它已成为巴塞尔协议II和III下建立资本缓冲以及国际财务报告准则9下计算金融资产减值的关键参数。关于这一主题的最新文献主要集中在估计方法上,而较少关注用于解释默认情况下损失变异性的变量。在本文中,我们通过构建一组基于客户行为的预测因子来扩展建模过程的这一部分,这些预测因子可用于构建更精确的模型,并且我们通过经验调查经济理由来检查它们的潜在用途。本文引入的主要新颖之处在于违约造成的损失与合约所有者的行为之间的联系,而不仅仅是合约本身。该方法减少了所选误差度量的值,逐步提高了预测能力。这种效果在参数方法(分数回归)中比在非参数方法(回归树)中更明显。我们的研究结果支持将面向客户的信息纳入给定默认模型的损失。
{"title":"Beyond the Contract: Client Behavior from Origination to Default as the New Set of the Loss Given Default Risk Drivers","authors":"Wojciech Starosta","doi":"10.21314/JRMV.2020.234","DOIUrl":"https://doi.org/10.21314/JRMV.2020.234","url":null,"abstract":"Modeling loss given default has increased in popularity as it has become a crucial parameter for establishing capital buffers under Basel II and III and for calculating the impairment of financial assets under the International Financial Reporting Standard 9. The most recent literature on this topic focuses mainly on estimation methods and less on the variables used to explain the variability in loss given default. In this paper, we expand this part of the modeling process by constructing a set of client-behavior-based predictors that can be used to construct more precise models, and we investigate the economic justifications empirically to examine their potential usage. The main novelty introduced in this paper is the connection between loss given default and the behavior of the contract owner, not just the contract itself. This approach results in the reduction of the values of selected error measures and progressively improves the forecasting ability. The effect is more visible in a parametric method (fractional regression) than in a nonparametric method (regression tree). Our findings support incorporating client-oriented information into loss given default models.","PeriodicalId":43447,"journal":{"name":"Journal of Risk Model Validation","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2019-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42382603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Journal of Risk Model Validation
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1