首页 > 最新文献

International Journal of Swarm Intelligence Research最新文献

英文 中文
Design and implementation of bi-level artificial bee colony algorithm to train hidden Markov models for performing multiple sequence alignment of proteins 设计和实现双级人工蜂群算法训练隐马尔可夫模型执行多序列比对的蛋白质
IF 1.1 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2021-04-26 DOI: 10.1504/IJSI.2021.114765
Soniya Lalwani
Multiple sequence alignment (MSA) is an NP-complete problem that is a challenging area from bioinformatics. Implementation of hidden Markov model (HMM) is one of the most effective approach for executing MSA, that performs training and testing of the sequence data so as to obtain alignment scores with accuracy. The training of HMM is again an NP-hard problem, hence it requires the implementation of metaheuristic methods. Proposed work presents a bi-level artificial bee colony (BL-ABC) algorithm to train hidden Markov models (HMMs) for MSA of proteins, i.e., BLABC-HMM. The trained stochastic model created by BL-ABC basically yields position-dependent probability matrices at higher prediction ratios. The performance of proposed algorithm is compared with the competitive state-of-the-art algorithms and different variants of particle swarm optimisation (PSO) algorithm on protein benchmark datasets from pfam and BAliBase database, and BLABC-HMM is found yielding better alignment scores and prediction accuracy.
多序列比对(Multiple sequence alignment, MSA)是一个np完全问题,是生物信息学领域的一个挑战。隐马尔可夫模型(HMM)的实现是实现MSA最有效的方法之一,隐马尔可夫模型对序列数据进行训练和测试,从而获得准确的对齐分数。HMM的训练也是np困难问题,因此需要采用元启发式方法。提出了一种双层人工蜂群(BL-ABC)算法,用于训练蛋白质MSA的隐马尔可夫模型(hmm),即BLABC-HMM。由BL-ABC建立的训练有素的随机模型基本上以较高的预测比率产生位置相关的概率矩阵。在pfam和BAliBase数据库的蛋白质基准数据集上,将所提出的算法与现有的竞争算法和粒子群优化(PSO)算法的不同变体进行了性能比较,发现BLABC-HMM具有更好的比对分数和预测精度。
{"title":"Design and implementation of bi-level artificial bee colony algorithm to train hidden Markov models for performing multiple sequence alignment of proteins","authors":"Soniya Lalwani","doi":"10.1504/IJSI.2021.114765","DOIUrl":"https://doi.org/10.1504/IJSI.2021.114765","url":null,"abstract":"Multiple sequence alignment (MSA) is an NP-complete problem that is a challenging area from bioinformatics. Implementation of hidden Markov model (HMM) is one of the most effective approach for executing MSA, that performs training and testing of the sequence data so as to obtain alignment scores with accuracy. The training of HMM is again an NP-hard problem, hence it requires the implementation of metaheuristic methods. Proposed work presents a bi-level artificial bee colony (BL-ABC) algorithm to train hidden Markov models (HMMs) for MSA of proteins, i.e., BLABC-HMM. The trained stochastic model created by BL-ABC basically yields position-dependent probability matrices at higher prediction ratios. The performance of proposed algorithm is compared with the competitive state-of-the-art algorithms and different variants of particle swarm optimisation (PSO) algorithm on protein benchmark datasets from pfam and BAliBase database, and BLABC-HMM is found yielding better alignment scores and prediction accuracy.","PeriodicalId":44265,"journal":{"name":"International Journal of Swarm Intelligence Research","volume":"29 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2021-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75207468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Landmark operator inspired artificial bee colony algorithm for optimal vector control of induction motor 基于地标算子的感应电机最优矢量控制人工蜂群算法
IF 1.1 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2021-04-26 DOI: 10.1504/IJSI.2021.114757
F. Sharma, S. R. Kapoor
In recent years, soft computing strategies have played vital role to solve optimisation problems associated with real world. In this paper, an efficient soft computing strategy namely, artificial bee colony algorithm (ABCalgo) is modified with incorporating landmark operator. The proposed modified ABC algorithm is named as landmark inspired ABC (LMABC). The performance of LMABC is evaluated on benchmark functions. Further, the proposed LMABC is applied for vector control of induction motor (IM) and subsequently to improve its efficiency. The vector control of IM includes control of magnitude and phase of each phase current and voltage. In this research paper the field orientated control, a digital implementation which demonstrates the capability of performing direct torque control, of handling system limitations and of achieving higher power conversion efficiency is considered. The obtained outcomes are significantly better than other state-of-art algorithms available in literature.
近年来,软计算策略在解决与现实世界相关的优化问题中发挥了至关重要的作用。本文对一种有效的软计算策略——人工蜂群算法(ABCalgo)进行了改进,并加入了地标算子。提出的改进ABC算法被命名为地标启发ABC (LMABC)。在基准函数上对LMABC的性能进行了评价。并将该方法应用于异步电动机的矢量控制,提高了异步电动机的效率。IM的矢量控制包括对各相电流和电压的幅值和相位的控制。在本文的研究中,考虑了面向场的控制,一种数字实现,证明了直接转矩控制的能力,处理系统的局限性和实现更高的功率转换效率。所得结果明显优于文献中现有的其他最先进的算法。
{"title":"Landmark operator inspired artificial bee colony algorithm for optimal vector control of induction motor","authors":"F. Sharma, S. R. Kapoor","doi":"10.1504/IJSI.2021.114757","DOIUrl":"https://doi.org/10.1504/IJSI.2021.114757","url":null,"abstract":"In recent years, soft computing strategies have played vital role to solve optimisation problems associated with real world. In this paper, an efficient soft computing strategy namely, artificial bee colony algorithm (ABCalgo) is modified with incorporating landmark operator. The proposed modified ABC algorithm is named as landmark inspired ABC (LMABC). The performance of LMABC is evaluated on benchmark functions. Further, the proposed LMABC is applied for vector control of induction motor (IM) and subsequently to improve its efficiency. The vector control of IM includes control of magnitude and phase of each phase current and voltage. In this research paper the field orientated control, a digital implementation which demonstrates the capability of performing direct torque control, of handling system limitations and of achieving higher power conversion efficiency is considered. The obtained outcomes are significantly better than other state-of-art algorithms available in literature.","PeriodicalId":44265,"journal":{"name":"International Journal of Swarm Intelligence Research","volume":"171 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2021-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90231553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid ARIMA-deep belief network model using PSO for stock price prediction 基于粒子群算法的混合arima -深度信念网络模型用于股票价格预测
IF 1.1 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2021-01-01 DOI: 10.1504/IJSI.2021.10036080
B. Mohan, Shaikh Sahil Ahmed, Mahesh Kankar, Nagaraj Naik
{"title":"Hybrid ARIMA-deep belief network model using PSO for stock price prediction","authors":"B. Mohan, Shaikh Sahil Ahmed, Mahesh Kankar, Nagaraj Naik","doi":"10.1504/IJSI.2021.10036080","DOIUrl":"https://doi.org/10.1504/IJSI.2021.10036080","url":null,"abstract":"","PeriodicalId":44265,"journal":{"name":"International Journal of Swarm Intelligence Research","volume":"69 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89167312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Hyperparameter tuning and comparison of k nearest neighbour and decision tree algorithms for cardiovascular disease prediction 用于心血管疾病预测的k近邻和决策树算法的超参数调整和比较
IF 1.1 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2021-01-01 DOI: 10.1504/ijsi.2021.10036482
Preeti Bhowmick, S. Gajjar, Shital Chaudhary
{"title":"Hyperparameter tuning and comparison of k nearest neighbour and decision tree algorithms for cardiovascular disease prediction","authors":"Preeti Bhowmick, S. Gajjar, Shital Chaudhary","doi":"10.1504/ijsi.2021.10036482","DOIUrl":"https://doi.org/10.1504/ijsi.2021.10036482","url":null,"abstract":"","PeriodicalId":44265,"journal":{"name":"International Journal of Swarm Intelligence Research","volume":"15 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73891345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comprehensive review of hidden Markov model applications in prediction of human mobility patterns 隐马尔可夫模型在人类迁移模式预测中的应用综述
IF 1.1 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2021-01-01 DOI: 10.1504/IJSI.2021.114766
Neha Rajawat, N. Gupta, Soniya Lalwani
{"title":"A comprehensive review of hidden Markov model applications in prediction of human mobility patterns","authors":"Neha Rajawat, N. Gupta, Soniya Lalwani","doi":"10.1504/IJSI.2021.114766","DOIUrl":"https://doi.org/10.1504/IJSI.2021.114766","url":null,"abstract":"","PeriodicalId":44265,"journal":{"name":"International Journal of Swarm Intelligence Research","volume":"266 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76383310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A coupled multi-linear regression and genetic algorithm-based modelling and optimisation of surface roughness in machining of brass 基于多线性回归和遗传算法的黄铜加工表面粗糙度建模与优化
IF 1.1 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2021-01-01 DOI: 10.1504/ijsi.2021.10039928
S. Manroo, Suhail Ganiny
{"title":"A coupled multi-linear regression and genetic algorithm-based modelling and optimisation of surface roughness in machining of brass","authors":"S. Manroo, Suhail Ganiny","doi":"10.1504/ijsi.2021.10039928","DOIUrl":"https://doi.org/10.1504/ijsi.2021.10039928","url":null,"abstract":"","PeriodicalId":44265,"journal":{"name":"International Journal of Swarm Intelligence Research","volume":"61 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79492173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Identification of female genital tuberculosis in infertility using textural features 利用肌理特征鉴别不孕症女性生殖器结核
IF 1.1 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2021-01-01 DOI: 10.1504/IJSI.2021.10037151
V. Saxena, Anita Sahoo, Varsha Garg
{"title":"Identification of female genital tuberculosis in infertility using textural features","authors":"V. Saxena, Anita Sahoo, Varsha Garg","doi":"10.1504/IJSI.2021.10037151","DOIUrl":"https://doi.org/10.1504/IJSI.2021.10037151","url":null,"abstract":"","PeriodicalId":44265,"journal":{"name":"International Journal of Swarm Intelligence Research","volume":"24 16 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90744764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dog breed classification using convolution neural network 基于卷积神经网络的犬种分类
IF 1.1 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2021-01-01 DOI: 10.1504/ijsi.2021.10040390
Mrityunjay Singh, A. Shukla, Amit Kumar Jakhar
{"title":"Dog breed classification using convolution neural network","authors":"Mrityunjay Singh, A. Shukla, Amit Kumar Jakhar","doi":"10.1504/ijsi.2021.10040390","DOIUrl":"https://doi.org/10.1504/ijsi.2021.10040390","url":null,"abstract":"","PeriodicalId":44265,"journal":{"name":"International Journal of Swarm Intelligence Research","volume":"41 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81400115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Predicting movie genre from plot summaries using Bi-LSTM network 利用Bi-LSTM网络从情节摘要中预测电影类型
IF 1.1 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2021-01-01 DOI: 10.1504/IJSI.2021.10037658
Prakhar Srivastava, Pankaj Srivastava
{"title":"Predicting movie genre from plot summaries using Bi-LSTM network","authors":"Prakhar Srivastava, Pankaj Srivastava","doi":"10.1504/IJSI.2021.10037658","DOIUrl":"https://doi.org/10.1504/IJSI.2021.10037658","url":null,"abstract":"","PeriodicalId":44265,"journal":{"name":"International Journal of Swarm Intelligence Research","volume":"58 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86203399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Abusive language detection using customised BERT 使用定制BERT的滥用语言检测
IF 1.1 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2021-01-01 DOI: 10.1504/ijsi.2021.10041159
K. H. Bindu, N. Nihal, Burre Chandu, Kaza Phani Rohitha
{"title":"Abusive language detection using customised BERT","authors":"K. H. Bindu, N. Nihal, Burre Chandu, Kaza Phani Rohitha","doi":"10.1504/ijsi.2021.10041159","DOIUrl":"https://doi.org/10.1504/ijsi.2021.10041159","url":null,"abstract":"","PeriodicalId":44265,"journal":{"name":"International Journal of Swarm Intelligence Research","volume":"66 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79614719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Swarm Intelligence Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1