This study observed the influence of magnetic field orientation on the premixed combustion of vegetable oil. The results show that the magnetic field increased the laminar burning velocity because the spin of electron became more energetic and changes the spin of hydrogen proton from para to ortho. The increase of flame speed became larger on vegetable oil with stronger electric poles. The attraction magnetic field gives the strongest effect against the increase of flame speed and makes flame stability limit wider toward lean equivalence ratio. This is because O2 with the paramagnetic nature is pumped more crossing flame from the south pole (S) to north pole (N) whereas the heat energy carried by H2O from the reaction product with the diamagnetic nature is pumped more crossing flame in the N pole to the S pole. This made the combustion close to Lewis number equal to unity, whereas in the repulsion magnetic poles, S-S, more O2 is pumped into the flame while more heat is pumped out of the flame, and thus, combustion in the flame is leaner and reactions are not optimal. Conversely, at N-N poles, more heat carried by H2O was pumped into the flame while more O2 was pumped out of the flame. As a result, combustion in the flame is richer and the reaction is also not optimal. As a consequence, the velocity of the laminar flame at the repelling poles is lower than that of attracting poles.
{"title":"The Role of Magnetic Field Orientation in Vegetable Oil Premixed Combustion","authors":"D. Perdana, L. Yuliati, N. Hamidi, I. Wardana","doi":"10.1155/2020/2145353","DOIUrl":"https://doi.org/10.1155/2020/2145353","url":null,"abstract":"This study observed the influence of magnetic field orientation on the premixed combustion of vegetable oil. The results show that the magnetic field increased the laminar burning velocity because the spin of electron became more energetic and changes the spin of hydrogen proton from para to ortho. The increase of flame speed became larger on vegetable oil with stronger electric poles. The attraction magnetic field gives the strongest effect against the increase of flame speed and makes flame stability limit wider toward lean equivalence ratio. This is because O2 with the paramagnetic nature is pumped more crossing flame from the south pole (S) to north pole (N) whereas the heat energy carried by H2O from the reaction product with the diamagnetic nature is pumped more crossing flame in the N pole to the S pole. This made the combustion close to Lewis number equal to unity, whereas in the repulsion magnetic poles, S-S, more O2 is pumped into the flame while more heat is pumped out of the flame, and thus, combustion in the flame is leaner and reactions are not optimal. Conversely, at N-N poles, more heat carried by H2O was pumped into the flame while more O2 was pumped out of the flame. As a result, combustion in the flame is richer and the reaction is also not optimal. As a consequence, the velocity of the laminar flame at the repelling poles is lower than that of attracting poles.","PeriodicalId":44364,"journal":{"name":"Journal of Combustion","volume":"46 1","pages":"1-11"},"PeriodicalIF":0.7,"publicationDate":"2020-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83666014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study deals with the development of controlled-ignition technology for high-performance compression ignition alcohol engines. Among the alcohol fuels, we focus on ethanol as it is a promising candidate of alternative fuels replacing petroleum. The objective of this study is to reveal the physical and chemical phenomena in the mixture formation process up to autoignition of an ethanol spray. In our previous numerical study, we showed the mixture formation process for gas oil and ethanol sprays in the form of spatial excess air ratio and temperature distributions inside a spray and their temporal histories from fuel injection. The results showed a good agreement with those of theoretical analysis based on the momentum theory of spray penetration. Calculation was also confirmed as reasonable by comparing to the experimental results. Through the series of our experimental and numerical studies, the reason for poor autoignition quality of an ethanol spray was revealed, that is, difficulty in simultaneous attainments of autoignition-suitable concentration and temperature in the spray mixture formation due to its fuel and thermal properties of smaller stoichiometric air-fuel ratio and much greater heat of evaporation compared to conventional diesel fuels. However, autoignition of an ethanol spray has not been obtained yet in either experiments or numerical analysis. As the next step, we numerically examined several surrounding gas pressure and temperature conditions to make clear the surrounding gas conditions enough to obtain stable autoignition. One of the commercial CFD codes CONVERGE was used in the computational calculation with the considerations of turbulence, atomization, evaporation, and detailed chemical reaction. Required surrounding gas pressure and temperature for stable autoignition with acceptable ignition delay of an ethanol spray and feasibility of the development of high-performance compression ignition alcohol engines are discussed in this paper.
{"title":"Numerical Study on the Required Surrounding Gas Conditions for Stable Autoignition of an Ethanol Spray","authors":"H. Saitoh, K. Uchida, Norihiko Watanabe","doi":"10.1155/2019/1329389","DOIUrl":"https://doi.org/10.1155/2019/1329389","url":null,"abstract":"This study deals with the development of controlled-ignition technology for high-performance compression ignition alcohol engines. Among the alcohol fuels, we focus on ethanol as it is a promising candidate of alternative fuels replacing petroleum. The objective of this study is to reveal the physical and chemical phenomena in the mixture formation process up to autoignition of an ethanol spray. In our previous numerical study, we showed the mixture formation process for gas oil and ethanol sprays in the form of spatial excess air ratio and temperature distributions inside a spray and their temporal histories from fuel injection. The results showed a good agreement with those of theoretical analysis based on the momentum theory of spray penetration. Calculation was also confirmed as reasonable by comparing to the experimental results. Through the series of our experimental and numerical studies, the reason for poor autoignition quality of an ethanol spray was revealed, that is, difficulty in simultaneous attainments of autoignition-suitable concentration and temperature in the spray mixture formation due to its fuel and thermal properties of smaller stoichiometric air-fuel ratio and much greater heat of evaporation compared to conventional diesel fuels. However, autoignition of an ethanol spray has not been obtained yet in either experiments or numerical analysis. As the next step, we numerically examined several surrounding gas pressure and temperature conditions to make clear the surrounding gas conditions enough to obtain stable autoignition. One of the commercial CFD codes CONVERGE was used in the computational calculation with the considerations of turbulence, atomization, evaporation, and detailed chemical reaction. Required surrounding gas pressure and temperature for stable autoignition with acceptable ignition delay of an ethanol spray and feasibility of the development of high-performance compression ignition alcohol engines are discussed in this paper.","PeriodicalId":44364,"journal":{"name":"Journal of Combustion","volume":"13 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2019-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82795147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-10-10DOI: 10.20944/preprints201910.0108.v1
Jean Paul Gram Shou, M. Obounou, T. Kofané, Mahamat Hassane Babikir
The effects of steam injection on combustion products and thermodynamic properties of diesel fuel, soybean oil-based biodiesel (NBD), and waste cooking oil biodiesel (WCOB) are examined in this study by considering the chemical equilibrium. The model gives equilibrium mole fractions, specific heat of the exhaust mixtures of 10 combustion products, and adiabatic flame temperatures. The results show that the mole fractions of carbon monoxide (CO) and carbon dioxide (CO2) decrease with the steam injection ratios. Nitric oxide (NO) mole fractions decrease with the steam injections ratios for lean mixtures. The specific heat of combustion products increases with the steam injection ratios. The equilibrium combustion products obtained can be used to calculate the nonequilibrium values of NO in the exhaust gases using some existing correlations of NO kinetics.
{"title":"Investigation of the Effects of Steam Injection on Equilibrium Products and Thermodynamic Properties of Diesel and Biodiesel Fuels","authors":"Jean Paul Gram Shou, M. Obounou, T. Kofané, Mahamat Hassane Babikir","doi":"10.20944/preprints201910.0108.v1","DOIUrl":"https://doi.org/10.20944/preprints201910.0108.v1","url":null,"abstract":"The effects of steam injection on combustion products and thermodynamic properties of diesel fuel, soybean oil-based biodiesel (NBD), and waste cooking oil biodiesel (WCOB) are examined in this study by considering the chemical equilibrium. The model gives equilibrium mole fractions, specific heat of the exhaust mixtures of 10 combustion products, and adiabatic flame temperatures. The results show that the mole fractions of carbon monoxide (CO) and carbon dioxide (CO2) decrease with the steam injection ratios. Nitric oxide (NO) mole fractions decrease with the steam injections ratios for lean mixtures. The specific heat of combustion products increases with the steam injection ratios. The equilibrium combustion products obtained can be used to calculate the nonequilibrium values of NO in the exhaust gases using some existing correlations of NO kinetics.","PeriodicalId":44364,"journal":{"name":"Journal of Combustion","volume":"8 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2019-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79564510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Coal dust explosions are the deadliest disasters facing the coal mining industry. Research has been conducted globally on this topic for decades. The first explosibility tests in the United States were performed by the Bureau of Mines using a 20 L chamber. This serves as the basis for all standardized tests used for combustible dusts. The purpose of this paper is to investigate the use of a new 38 L chamber for testing coal dust explosions. The 38 L chamber features design modifications to model the unique conditions present in an underground coal mine when compared to other industries where combustible dust hazards are present. A series of explosibility tests were conducted within the explosive chamber using a sample of Pittsburgh pulverized coal dust and a five kJ Sobbe igniter. Analysis to find the maximum pressure ratio and Kst combustible dust parameter was performed for each trial. Based upon this analysis, observations are made for each concentration regarding whether the explosibility test was under-fueled or over-fueled. Based upon this analysis, a recommendation for future explosibility testing concentrations is made.
{"title":"Evaluation of a 38 L Explosive Chamber for Testing Coal Dust Explosibility","authors":"R. Eades, K. Perry","doi":"10.1155/2019/5810173","DOIUrl":"https://doi.org/10.1155/2019/5810173","url":null,"abstract":"Coal dust explosions are the deadliest disasters facing the coal mining industry. Research has been conducted globally on this topic for decades. The first explosibility tests in the United States were performed by the Bureau of Mines using a 20 L chamber. This serves as the basis for all standardized tests used for combustible dusts. The purpose of this paper is to investigate the use of a new 38 L chamber for testing coal dust explosions. The 38 L chamber features design modifications to model the unique conditions present in an underground coal mine when compared to other industries where combustible dust hazards are present. A series of explosibility tests were conducted within the explosive chamber using a sample of Pittsburgh pulverized coal dust and a five kJ Sobbe igniter. Analysis to find the maximum pressure ratio and Kst combustible dust parameter was performed for each trial. Based upon this analysis, observations are made for each concentration regarding whether the explosibility test was under-fueled or over-fueled. Based upon this analysis, a recommendation for future explosibility testing concentrations is made.","PeriodicalId":44364,"journal":{"name":"Journal of Combustion","volume":"21 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2019-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81557800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper extends a recent theoretical study that was previously presented in the form of a brief communication (Zimont, C&F, 192, 2018, 221-223), in which we proposed a simple splitting method for the derivation of two-fluid conditionally averaged equations of turbulent premixed combustion in the flamelet regime, formulated more conveniently for applications involving unclosed equations without surface-averaged unknowns. This two-fluid conditional averaging paradigm avoids the challenge in the Favre averaging paradigm of modeling the countergradient scalar transport phenomenon and the unusually large velocity fluctuations in a turbulent premixed flame. It is a more suitable conceptual framework that is likely to be more convenient in the long run than the traditional Favre averaging method. In this article, we further develop this paradigm and pay particular attention to the problem of modeling turbulent premixed combustion in the context of a two-fluid approach. We formulate and analyze the unclosed differential equations in terms of the conditions of the Reynolds stresses τij,u, τij,b and the mean chemical source ρW¯, which are the only modeling unknowns required in our alternative conditionally averaged equations. These equations are necessary for the development of model differential equations for the Reynolds stresses and the chemical source in the advanced modeling and simulation of turbulent premixed combustion. We propose a simpler approach to modeling the conditional Reynolds stresses based on the use of the two-fluid conditional equations of the standard “k-ε” turbulence model, which we formulate using the splitting method. The main problem arising here is the appearance in these equations of unknown terms describing the exchange of the turbulent energy k and dissipation rate ε in the unburned and burned gases. We propose an approximate way to avoid this problem. We formulate a simple algebraic expression for the mean chemical source that follows from our previous theoretical analysis of the transient turbulent premixed flame in the intermediate asymptotic stage, in which small-scale wrinkles in the instantaneous flame surface reach statistical equilibrium, while the large-scale wrinkles remain in statistical nonequilibrium.
{"title":"A Two-Fluid Conditional Averaging Paradigm for the Theory and Modeling of Turbulent Premixed Combustion","authors":"V. Zimont","doi":"10.1155/2019/5036878","DOIUrl":"https://doi.org/10.1155/2019/5036878","url":null,"abstract":"This paper extends a recent theoretical study that was previously presented in the form of a brief communication (Zimont, C&F, 192, 2018, 221-223), in which we proposed a simple splitting method for the derivation of two-fluid conditionally averaged equations of turbulent premixed combustion in the flamelet regime, formulated more conveniently for applications involving unclosed equations without surface-averaged unknowns. This two-fluid conditional averaging paradigm avoids the challenge in the Favre averaging paradigm of modeling the countergradient scalar transport phenomenon and the unusually large velocity fluctuations in a turbulent premixed flame. It is a more suitable conceptual framework that is likely to be more convenient in the long run than the traditional Favre averaging method. In this article, we further develop this paradigm and pay particular attention to the problem of modeling turbulent premixed combustion in the context of a two-fluid approach. We formulate and analyze the unclosed differential equations in terms of the conditions of the Reynolds stresses τij,u, τij,b and the mean chemical source ρW¯, which are the only modeling unknowns required in our alternative conditionally averaged equations. These equations are necessary for the development of model differential equations for the Reynolds stresses and the chemical source in the advanced modeling and simulation of turbulent premixed combustion. We propose a simpler approach to modeling the conditional Reynolds stresses based on the use of the two-fluid conditional equations of the standard “k-ε” turbulence model, which we formulate using the splitting method. The main problem arising here is the appearance in these equations of unknown terms describing the exchange of the turbulent energy k and dissipation rate ε in the unburned and burned gases. We propose an approximate way to avoid this problem. We formulate a simple algebraic expression for the mean chemical source that follows from our previous theoretical analysis of the transient turbulent premixed flame in the intermediate asymptotic stage, in which small-scale wrinkles in the instantaneous flame surface reach statistical equilibrium, while the large-scale wrinkles remain in statistical nonequilibrium.","PeriodicalId":44364,"journal":{"name":"Journal of Combustion","volume":"37 2 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2019-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89144665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The use of interurban and urban trains has become the preferred choice for millions of daily commuters around the world. Despite the huge public investment for train technology and mayor rail infrastructure (e.g., tunnels), train safety is still a subject of concern. The work described herein reviews the state of the art on research related to critical velocity and backlayering conditions in tunnel fires. The review on backlayering conditions includes the effect of blockages, inclination, and the location of the fire source. The review herein focuses on experimental and theoretical research, although it excludes research studies using numerical modeling. Many studies have used scaled tunnel structures for experimental testing; nevertheless, there are various scaling challenges associated with these studies. For example, very little work has been done on flame length, fire source location, and the effect of more than one blockage, and how results on scaled experiments represent the behaviour at real-scale. The review sheds light on the current hazards associated with fires in rail tunnels.
{"title":"Critical Velocity and Backlayering Conditions in Rail Tunnel Fires: State-of-the-Art Review","authors":"R. Haddad, C. Maluk, E. Reda, Z. Harun","doi":"10.1155/2019/3510245","DOIUrl":"https://doi.org/10.1155/2019/3510245","url":null,"abstract":"The use of interurban and urban trains has become the preferred choice for millions of daily commuters around the world. Despite the huge public investment for train technology and mayor rail infrastructure (e.g., tunnels), train safety is still a subject of concern. The work described herein reviews the state of the art on research related to critical velocity and backlayering conditions in tunnel fires. The review on backlayering conditions includes the effect of blockages, inclination, and the location of the fire source. The review herein focuses on experimental and theoretical research, although it excludes research studies using numerical modeling. Many studies have used scaled tunnel structures for experimental testing; nevertheless, there are various scaling challenges associated with these studies. For example, very little work has been done on flame length, fire source location, and the effect of more than one blockage, and how results on scaled experiments represent the behaviour at real-scale. The review sheds light on the current hazards associated with fires in rail tunnels.","PeriodicalId":44364,"journal":{"name":"Journal of Combustion","volume":"36 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2019-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73907834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The deflagration characteristics of premixed LNG vapour-air mixtures with different mixing ratios were quantitatively and qualitatively investigated by using CFD (computational fluid dynamics) method. The CFD model was initially established based on theoretical analysis and then validated by a lab-scale deflagration experiment. The flame propagation behaviour, pressure-time history, and flame speed were compared with the experimental data, upon which a good agreement was achieved. A large-scale deflagration fire during LNG bunkering process was conducted using the model to investigate the flame development and overpressure effects. Mesh independence and time scale were tested in order to obtain the suitable grid resolution and time step. Deflagration cases with two different LNG vapour volume fractions, i.e., 10.4% and 15.0%, were simulated and compared. The one with a volume fraction of 10.4% which was around stoichiometric mixing ratio had the highest flame propagating speed. High flame velocity observed in the simulation was coupled with the thin flame front where overpressure occurred. The CFD model could capture the main features of deflagration combustion and account for LNG fire hazard which could provide an in-depth insight when dealing with complicated cases.
{"title":"Dynamic Simulation on Deflagration of LNG Spill","authors":"Biao Sun, K. Guo, V. Pareek","doi":"10.1155/2019/7439589","DOIUrl":"https://doi.org/10.1155/2019/7439589","url":null,"abstract":"The deflagration characteristics of premixed LNG vapour-air mixtures with different mixing ratios were quantitatively and qualitatively investigated by using CFD (computational fluid dynamics) method. The CFD model was initially established based on theoretical analysis and then validated by a lab-scale deflagration experiment. The flame propagation behaviour, pressure-time history, and flame speed were compared with the experimental data, upon which a good agreement was achieved. A large-scale deflagration fire during LNG bunkering process was conducted using the model to investigate the flame development and overpressure effects. Mesh independence and time scale were tested in order to obtain the suitable grid resolution and time step. Deflagration cases with two different LNG vapour volume fractions, i.e., 10.4% and 15.0%, were simulated and compared. The one with a volume fraction of 10.4% which was around stoichiometric mixing ratio had the highest flame propagating speed. High flame velocity observed in the simulation was coupled with the thin flame front where overpressure occurred. The CFD model could capture the main features of deflagration combustion and account for LNG fire hazard which could provide an in-depth insight when dealing with complicated cases.","PeriodicalId":44364,"journal":{"name":"Journal of Combustion","volume":"24 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2019-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88848645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Philippe Onguene Mvogo, R. Mouangue, Justin Tégawendé Zaida, M. Obounou, H. E. Ekobena Fouda
Compartment fire is conducted by complex phenomena which have been the topics of many studies. During fire incident in a building, damage to occupants is not often due to the direct exposition to flames but to hot and toxic gases resulting from combustion between combustibles and surrounding air. Heat is therefore taken far from the source by combustion products which could involve a rapid spread of fire in the entire building. With the intention of studying the impact of the opening size on the behaviour of fire, experimental and computational studies have been undertaken in a reduced scale room including a single open door. Owing to Froude modelling, the obtained results have been transposed into full scale results. In accordance with experiments, numerical studies enabled the investigation of the influence of the ventilation factor on velocities of incoming air and outgoing burned gases and on areas of the surfaces crossed by these fluids during full-developed fire. Comparison of the deduced mass flow rates with the literature reveals an approval agreement.
{"title":"Building Fire: Experimental and Numerical Studies on Behaviour of Flows at Opening","authors":"Philippe Onguene Mvogo, R. Mouangue, Justin Tégawendé Zaida, M. Obounou, H. E. Ekobena Fouda","doi":"10.1155/2019/2535073","DOIUrl":"https://doi.org/10.1155/2019/2535073","url":null,"abstract":"Compartment fire is conducted by complex phenomena which have been the topics of many studies. During fire incident in a building, damage to occupants is not often due to the direct exposition to flames but to hot and toxic gases resulting from combustion between combustibles and surrounding air. Heat is therefore taken far from the source by combustion products which could involve a rapid spread of fire in the entire building. With the intention of studying the impact of the opening size on the behaviour of fire, experimental and computational studies have been undertaken in a reduced scale room including a single open door. Owing to Froude modelling, the obtained results have been transposed into full scale results. In accordance with experiments, numerical studies enabled the investigation of the influence of the ventilation factor on velocities of incoming air and outgoing burned gases and on areas of the surfaces crossed by these fluids during full-developed fire. Comparison of the deduced mass flow rates with the literature reveals an approval agreement.","PeriodicalId":44364,"journal":{"name":"Journal of Combustion","volume":"27 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2019-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78597283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
There has been considerable progress in the area of fuel surrogate development to emulate gasoline fuels’ oxidation properties. The current paper aims to review the relevant hydrocarbon group components used for the formulation of gasoline surrogates, review specific gasoline surrogates reported in the literature, outlining their utility and deficiencies, and identify the future research needs in the area of gasoline surrogates and kinetics model.
{"title":"Review of Oxidation of Gasoline Surrogates and Its Components","authors":"J. Piehl, A. Zyada, L. Bravo, O. Samimi-Abianeh","doi":"10.1155/2018/8406754","DOIUrl":"https://doi.org/10.1155/2018/8406754","url":null,"abstract":"There has been considerable progress in the area of fuel surrogate development to emulate gasoline fuels’ oxidation properties. The current paper aims to review the relevant hydrocarbon group components used for the formulation of gasoline surrogates, review specific gasoline surrogates reported in the literature, outlining their utility and deficiencies, and identify the future research needs in the area of gasoline surrogates and kinetics model.","PeriodicalId":44364,"journal":{"name":"Journal of Combustion","volume":"33 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2018-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84996697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Coal combustion is the largest source of global energy consumption and electricity generation worldwide now and will remain so in the foreseeable future, although coal is also one of the major sources of air pollution. Increasing the efficiency of coal-fired power plants across the world will greatly reduce air pollution and extend the lifetime of our coal resources. The combustion of solid biomass fuels as a renewable energy source has grown significantly in the last decade, principally because it can be used to replace fossil fuels (coal, oil, and natural gas). For this special issue of the Journal of Combustion, we have invited researchers to focus on the combustion of solid fuels and their related processes in power generation. The submitted papers cover a diversity of aspects reflecting the latest progress in the field. These include integrating the supercritical CO 2 Brayton cycle with the coal-fired circulating fluidized-bed boiler, coal and biomass cofiring systems, combustion kinetics of biomass materials, thermal improvement and combustion kinetics of enriched coal, and Computed Tomography of Chemiluminescence (CTC) for turbulent industrial flame reconstruction. Biomass appears to be a promising source of power generation and about half of the papers focus on the biomass related fields, including the combustion kinetic characteristics of wood powder and pellets, as well as the combustion process. Although some methods to utilize pure biomass have been developed (e.g., pyrolysis, gasification, and combustion), the coal and biomass cofiring system is still the most important technology for biomass energy conversion. In this special issue, both of the final published papers on biomass utilization pay attention to the coal and biomass cofiring process, implying that coal combustion is still difficult to be entirely replaced in energy generation. Regarding the methods used in the published research, both experimental and numerical methods show their advantages in different fields. In this special issue, the combustion kinetics of different materials were studied experimentally and numerical research was carried out to study the combustion processes. Computed Tomography of Chemiluminescence (CTC) for turbulent industrial flame reconstruction was also included in the current issue, which may become a useful tool for researchers and scientists for studying flame structure and evolution.
{"title":"Coal and Biomass Combustion","authors":"H. Jin, K. Luo, O. Stein, H. Watanabe, X. Ku","doi":"10.1155/2018/9654923","DOIUrl":"https://doi.org/10.1155/2018/9654923","url":null,"abstract":"Coal combustion is the largest source of global energy consumption and electricity generation worldwide now and will remain so in the foreseeable future, although coal is also one of the major sources of air pollution. Increasing the efficiency of coal-fired power plants across the world will greatly reduce air pollution and extend the lifetime of our coal resources. The combustion of solid biomass fuels as a renewable energy source has grown significantly in the last decade, principally because it can be used to replace fossil fuels (coal, oil, and natural gas). For this special issue of the Journal of Combustion, we have invited researchers to focus on the combustion of solid fuels and their related processes in power generation. The submitted papers cover a diversity of aspects reflecting the latest progress in the field. These include integrating the supercritical CO 2 Brayton cycle with the coal-fired circulating fluidized-bed boiler, coal and biomass cofiring systems, combustion kinetics of biomass materials, thermal improvement and combustion kinetics of enriched coal, and Computed Tomography of Chemiluminescence (CTC) for turbulent industrial flame reconstruction. Biomass appears to be a promising source of power generation and about half of the papers focus on the biomass related fields, including the combustion kinetic characteristics of wood powder and pellets, as well as the combustion process. Although some methods to utilize pure biomass have been developed (e.g., pyrolysis, gasification, and combustion), the coal and biomass cofiring system is still the most important technology for biomass energy conversion. In this special issue, both of the final published papers on biomass utilization pay attention to the coal and biomass cofiring process, implying that coal combustion is still difficult to be entirely replaced in energy generation. Regarding the methods used in the published research, both experimental and numerical methods show their advantages in different fields. In this special issue, the combustion kinetics of different materials were studied experimentally and numerical research was carried out to study the combustion processes. Computed Tomography of Chemiluminescence (CTC) for turbulent industrial flame reconstruction was also included in the current issue, which may become a useful tool for researchers and scientists for studying flame structure and evolution.","PeriodicalId":44364,"journal":{"name":"Journal of Combustion","volume":"94 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2018-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83878875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}