Pub Date : 1900-01-01DOI: 10.2312/PE/vriphys/vriphys11/119-128
Joachim Georgii, C. Dresky, Sebastian Meier, D. Demedts, Christian Schumann, Tobias Preußer
Over the past years, high intensity focused ultrasound therapy has beco me a promising therapeutic alternative for non-invasive tumor treatment. The basic idea of this interventional approa ch is to apply focused ultrasound waves to the tumor tissue such that the cells are heated and hence destroyed. Sinc e it is quite difficult to assess the quality of this non-invasive therapy, there is a dire need for computer support in planning, conduction, and monitoring of such treatments. In this work, we propose efficient simulation techniques for focused ultras ound waves as well as their heat dissemination using current graphics hardware as a numerical co-proc essor. We achieve speed-ups between 10 and 700 for the single simulation steps compared to an optimized CPU solution, over all resulting in a significant performance gain over previous approaches for simulation of focused u ltrasound.
{"title":"Focused Ultrasound - Efficient GPU Simulation Methods for Therapy Planning","authors":"Joachim Georgii, C. Dresky, Sebastian Meier, D. Demedts, Christian Schumann, Tobias Preußer","doi":"10.2312/PE/vriphys/vriphys11/119-128","DOIUrl":"https://doi.org/10.2312/PE/vriphys/vriphys11/119-128","url":null,"abstract":"Over the past years, high intensity focused ultrasound therapy has beco me a promising therapeutic alternative for non-invasive tumor treatment. The basic idea of this interventional approa ch is to apply focused ultrasound waves to the tumor tissue such that the cells are heated and hence destroyed. Sinc e it is quite difficult to assess the quality of this non-invasive therapy, there is a dire need for computer support in planning, conduction, and monitoring of such treatments. In this work, we propose efficient simulation techniques for focused ultras ound waves as well as their heat dissemination using current graphics hardware as a numerical co-proc essor. We achieve speed-ups between 10 and 700 for the single simulation steps compared to an optimized CPU solution, over all resulting in a significant performance gain over previous approaches for simulation of focused u ltrasound.","PeriodicalId":446363,"journal":{"name":"Workshop on Virtual Reality Interactions and Physical Simulations","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129843714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1900-01-01DOI: 10.2312/vriphys.20181065
Jing Li, Tiantian Liu, L. Kavan
Damping is an important ingredient in physics-based simulation of deformable objects. Recent work introduced new fast simulation methods such as Position Based Dynamics and Projective Dynamics. Explicit velocity damping methods currently used in conjunction with Position Based Dynamics or Projective Dynamics are simple and fast, but have some limitations. They may damp global motion or non-physically transport velocities throughout the simulated object. More advanced damping models do not have these limitations, but are slow to evaluate, defeating the benefits of fast solvers such as Projective Dynamics. We present a new type of damping model specifically designed for Projective Dynamics, which provides the quality of advanced damping models while adding only minimal computing overhead. The key idea is to define damping forces using Projective Dynamics’ Laplacian matrix. In a number of simulation examples we show that this damping model works very well in practice. When used with a modified Projective Dynamics solver that uses a non-dissipative implicit midpoint integrator, our damping method provides fully user-controllable damping, allowing the user to quickly produce visually pleasing and vivid animations. CCS Concepts • Computing methodologies → Physical simulation;
{"title":"Laplacian Damping for Projective Dynamics","authors":"Jing Li, Tiantian Liu, L. Kavan","doi":"10.2312/vriphys.20181065","DOIUrl":"https://doi.org/10.2312/vriphys.20181065","url":null,"abstract":"Damping is an important ingredient in physics-based simulation of deformable objects. Recent work introduced new fast simulation methods such as Position Based Dynamics and Projective Dynamics. Explicit velocity damping methods currently used in conjunction with Position Based Dynamics or Projective Dynamics are simple and fast, but have some limitations. They may damp global motion or non-physically transport velocities throughout the simulated object. More advanced damping models do not have these limitations, but are slow to evaluate, defeating the benefits of fast solvers such as Projective Dynamics. We present a new type of damping model specifically designed for Projective Dynamics, which provides the quality of advanced damping models while adding only minimal computing overhead. The key idea is to define damping forces using Projective Dynamics’ Laplacian matrix. In a number of simulation examples we show that this damping model works very well in practice. When used with a modified Projective Dynamics solver that uses a non-dissipative implicit midpoint integrator, our damping method provides fully user-controllable damping, allowing the user to quickly produce visually pleasing and vivid animations. CCS Concepts • Computing methodologies → Physical simulation;","PeriodicalId":446363,"journal":{"name":"Workshop on Virtual Reality Interactions and Physical Simulations","volume":"165 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121480856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1900-01-01DOI: 10.2312/vriphys.20141223
D. Weber, J. Mueller-Roemer, C. Altenhofen, A. Stork, D. Fellner
We present a novel p-multigrid method for efficient simulation of co-rotational elasticity with higher-order finite elements. In contrast to other multigrid methods proposed for volumetric deformation, the resolution hierarchy is realized by varying polynomial degrees on a tetrahedral mesh. We demonstrate the efficiency of our approach and compare it to commonly used direct sparse solvers and preconditioned conjugate gradient methods. As the polynomial representation is defined w.r.t. the same mesh, the update of the matrix hierarchy necessary for co-rotational elasticity can be computed efficiently. We introduce the use of cubic finite elements for volumetric deformation and investigate different combinations of polynomial degrees for the hierarchy. We analyze the applicability of cubic finite elements for deformation simulation by comparing analytical results in a static scenario and demonstrate our algorithm in dynamic simulations with quadratic and cubic elements. Applying our method to quadratic and cubic finite elements results in speed up of up to a factor of 7 for solving the linear system.
{"title":"A p-Multigrid Algorithm using Cubic Finite Elements for Efficient Deformation Simulation","authors":"D. Weber, J. Mueller-Roemer, C. Altenhofen, A. Stork, D. Fellner","doi":"10.2312/vriphys.20141223","DOIUrl":"https://doi.org/10.2312/vriphys.20141223","url":null,"abstract":"We present a novel p-multigrid method for efficient simulation of co-rotational elasticity with higher-order finite elements. In contrast to other multigrid methods proposed for volumetric deformation, the resolution hierarchy is realized by varying polynomial degrees on a tetrahedral mesh. We demonstrate the efficiency of our approach and compare it to commonly used direct sparse solvers and preconditioned conjugate gradient methods. As the polynomial representation is defined w.r.t. the same mesh, the update of the matrix hierarchy necessary for co-rotational elasticity can be computed efficiently. We introduce the use of cubic finite elements for volumetric deformation and investigate different combinations of polynomial degrees for the hierarchy. We analyze the applicability of cubic finite elements for deformation simulation by comparing analytical results in a static scenario and demonstrate our algorithm in dynamic simulations with quadratic and cubic elements. Applying our method to quadratic and cubic finite elements results in speed up of up to a factor of 7 for solving the linear system.","PeriodicalId":446363,"journal":{"name":"Workshop on Virtual Reality Interactions and Physical Simulations","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125607669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1900-01-01DOI: 10.2312/PE/vriphys/vriphys09/105-114
Morten Silcowitz-Hansen, Sarah Niebe, Kenny Erleben
EUROGRAPHICS D L IGITAL IBRARY www.eg.org diglib.eg.org Abstract In interactive physical simulation, contact forces are applied to prevent rigid bodies from penetrating each other. Accurate contact force determination is a computationally hard problem. Thus, in practice one trades accuracy for performance. The result is visual artifacts such as viscous or damped contact response. In this paper, we present a new approach to contact force determination. We reformulate the contact force problem as a nonlinear root search problem, using a Fischer function. We solve this problem using a generalized Newton method. Our new Fischer– Newton method shows improved qualities for specific configurations where the most widespread alternative, the Projected Gauss-Seidel method, fails. Experiments show superior convergence properties of the exact Fischer– Newton method.
{"title":"Nonsmooth Newton Method for Fischer Function Reformulation of Contact Force Problems for Interactive Rigid Body Simulation","authors":"Morten Silcowitz-Hansen, Sarah Niebe, Kenny Erleben","doi":"10.2312/PE/vriphys/vriphys09/105-114","DOIUrl":"https://doi.org/10.2312/PE/vriphys/vriphys09/105-114","url":null,"abstract":"EUROGRAPHICS D L IGITAL IBRARY www.eg.org diglib.eg.org Abstract In interactive physical simulation, contact forces are applied to prevent rigid bodies from penetrating each other. Accurate contact force determination is a computationally hard problem. Thus, in practice one trades accuracy for performance. The result is visual artifacts such as viscous or damped contact response. In this paper, we present a new approach to contact force determination. We reformulate the contact force problem as a nonlinear root search problem, using a Fischer function. We solve this problem using a generalized Newton method. Our new Fischer– Newton method shows improved qualities for specific configurations where the most widespread alternative, the Projected Gauss-Seidel method, fails. Experiments show superior convergence properties of the exact Fischer– Newton method.","PeriodicalId":446363,"journal":{"name":"Workshop on Virtual Reality Interactions and Physical Simulations","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131178785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1900-01-01DOI: 10.2312/PE/vriphys/vriphys06/091-100
Marco Agus, E. Gobbetti, G. Pintore, G. Zanetti, Antonio Zorcolo
We present a real‐time simulation of the phaco-emulsification task in a virtualreality training system for cataract surgery. Phaco‐emulsification consists in breaking in small fragments an d completely removing the eye crystalline lens by employing an ultra‐sound tool called phaco‐emulsificator. Our ap proach employs a mesh-less shape‐ based dynamic algorithm integrated with a simplex geometry representation in order to efficiently handle the rendering process and the continuous modifications involved by the surg ical tool interaction, and with a smoothed particle hydrodynamics scheme with spatial ordering for handling fragmen ts interactions. The complete training system also simulates other tasks involved in cataract surgery, like the cor neal incision and the capsulorhexis. The simulator runs on a multiprocessing PC platform and provides realistic ph ysically-based visual simulations of tools interactions. The current setup employs SensAble PHANToM for s imulating the interaction devices, and a binocular display for presenting images to the user.
{"title":"Real Time Simulation of Phaco-emulsification for Cataract Surgery Training","authors":"Marco Agus, E. Gobbetti, G. Pintore, G. Zanetti, Antonio Zorcolo","doi":"10.2312/PE/vriphys/vriphys06/091-100","DOIUrl":"https://doi.org/10.2312/PE/vriphys/vriphys06/091-100","url":null,"abstract":"We present a real‐time simulation of the phaco-emulsification task in a virtualreality training system for cataract surgery. Phaco‐emulsification consists in breaking in small fragments an d completely removing the eye crystalline lens by employing an ultra‐sound tool called phaco‐emulsificator. Our ap proach employs a mesh-less shape‐ based dynamic algorithm integrated with a simplex geometry representation in order to efficiently handle the rendering process and the continuous modifications involved by the surg ical tool interaction, and with a smoothed particle hydrodynamics scheme with spatial ordering for handling fragmen ts interactions. The complete training system also simulates other tasks involved in cataract surgery, like the cor neal incision and the capsulorhexis. The simulator runs on a multiprocessing PC platform and provides realistic ph ysically-based visual simulations of tools interactions. The current setup employs SensAble PHANToM for s imulating the interaction devices, and a binocular display for presenting images to the user.","PeriodicalId":446363,"journal":{"name":"Workshop on Virtual Reality Interactions and Physical Simulations","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131550967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1900-01-01DOI: 10.2312/PE/vriphys/vriphys12/021-030
Jan Bender, Crispin Deul
In this paper we present an efficient adaptive cloth simulation based on the √ 3-refinement scheme. Our adaptive cloth model can handle arbitrary triangle meshes and is not restricted to regular grid meshes which are required by other methods. Previous works on adaptive cloth simulation often use discrete cloth models like mass-spring systems in combination with a specific subdivision scheme. The problem of such models is that the simulation does not converge to the correct solution as the mesh is refined. We propose to use a cloth model which is based on continuum mechanics since continuous models do not have this problem. In order to perform an efficient simulation we use a linear elasticity model in combination with a corotational formulation. The √ 3-subdivision scheme has the advantage that it generates high quality meshes while the number of triangles increases only by a factor of 3 in each refinement step. However, the original scheme only defines a mesh refinement. Therefore, we introduce an extension to support the coarsening of our simulation model as well. Our proposed mesh adaption can be performed efficiently and therefore does not cause much overhead. In this paper we will show that a significant performance gain can be achieved by our adaptive method.
{"title":"Efficient Cloth Simulation Using an Adaptive Finite Element Method","authors":"Jan Bender, Crispin Deul","doi":"10.2312/PE/vriphys/vriphys12/021-030","DOIUrl":"https://doi.org/10.2312/PE/vriphys/vriphys12/021-030","url":null,"abstract":"In this paper we present an efficient adaptive cloth simulation based on the √ 3-refinement scheme. Our adaptive cloth model can handle arbitrary triangle meshes and is not restricted to regular grid meshes which are required by other methods. Previous works on adaptive cloth simulation often use discrete cloth models like mass-spring systems in combination with a specific subdivision scheme. The problem of such models is that the simulation does not converge to the correct solution as the mesh is refined. We propose to use a cloth model which is based on continuum mechanics since continuous models do not have this problem. In order to perform an efficient simulation we use a linear elasticity model in combination with a corotational formulation. The √ 3-subdivision scheme has the advantage that it generates high quality meshes while the number of triangles increases only by a factor of 3 in each refinement step. However, the original scheme only defines a mesh refinement. Therefore, we introduce an extension to support the coarsening of our simulation model as well. Our proposed mesh adaption can be performed efficiently and therefore does not cause much overhead. In this paper we will show that a significant performance gain can be achieved by our adaptive method.","PeriodicalId":446363,"journal":{"name":"Workshop on Virtual Reality Interactions and Physical Simulations","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133033977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1900-01-01DOI: 10.2312/PE/vriphys/vriphys09/115-124
J. Damkjær, Kenny Erleben
delivered by EUROGRAPHICS D L IGITAL IBRARY www.eg.org diglib.eg.org Abstract The performance bottleneck of physics based animation is often the collision detection. It is well known by practitioners that the collision detection may consume more than half of the simulation time. In this work, we will introduce a novel approach for collision detection using bounding volume hierarchies. Our approach makes it possible to perform non-convex object versus non-convex object collision on the GPU, using tandem traversals of bounding volume hierarchies. Prior work only supports single traversals on GPUs. We introduce a blocked hierarchy data structure, using imaginary nodes and a simultaneous descend in the tandem traversal. The data structure design and traversal are highly specialized for exploiting the parallel threads in the NVIDIA GPUs. As proof-of-concept we demonstrate a GPU implementation for a multibody dynamics simulation, showing an approximate speedup factor of up to 8 compared to a CPU implementation.
{"title":"GPU Accelerated Tandem Traversal of Blocked Bounding Volume Hierarchy Collision Detection for Multibody Dynamics","authors":"J. Damkjær, Kenny Erleben","doi":"10.2312/PE/vriphys/vriphys09/115-124","DOIUrl":"https://doi.org/10.2312/PE/vriphys/vriphys09/115-124","url":null,"abstract":"delivered by EUROGRAPHICS D L IGITAL IBRARY www.eg.org diglib.eg.org Abstract The performance bottleneck of physics based animation is often the collision detection. It is well known by practitioners that the collision detection may consume more than half of the simulation time. In this work, we will introduce a novel approach for collision detection using bounding volume hierarchies. Our approach makes it possible to perform non-convex object versus non-convex object collision on the GPU, using tandem traversals of bounding volume hierarchies. Prior work only supports single traversals on GPUs. We introduce a blocked hierarchy data structure, using imaginary nodes and a simultaneous descend in the tandem traversal. The data structure design and traversal are highly specialized for exploiting the parallel threads in the NVIDIA GPUs. As proof-of-concept we demonstrate a GPU implementation for a multibody dynamics simulation, showing an approximate speedup factor of up to 8 compared to a CPU implementation.","PeriodicalId":446363,"journal":{"name":"Workshop on Virtual Reality Interactions and Physical Simulations","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115063582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1900-01-01DOI: 10.2312/PE/vriphys/vriphys09/021-030
Daniel Holz, Thomas Beer, Torsten Kuhlen
The simulation of soil deformation in real-time is a challenging task. Realizing the strengths and weaknesses of particle and mesh-based approaches we propose a hybrid model that combines both. Together with an adaptive sampling method, which effectively reduces the number of particles in the simulation, and a selective update technique our method is applicable in real-time VR environments. Furthermore, in order to account for the high degree of dynamics in soil behavior we consider soil as non-homogeneous and account for its degree of compaction. By incorporating soil mechanical formulations in our model and considering several physically plausible parameters the presented method allows for the simulation of soil as the material empirically investigated by civil engineers and soil mechanicians for decades.
{"title":"Soil Deformation Models for Real-Time Simulation: A Hybrid Approach","authors":"Daniel Holz, Thomas Beer, Torsten Kuhlen","doi":"10.2312/PE/vriphys/vriphys09/021-030","DOIUrl":"https://doi.org/10.2312/PE/vriphys/vriphys09/021-030","url":null,"abstract":"The simulation of soil deformation in real-time is a challenging task. Realizing the strengths and weaknesses of particle and mesh-based approaches we propose a hybrid model that combines both. Together with an adaptive sampling method, which effectively reduces the number of particles in the simulation, and a selective update technique our method is applicable in real-time VR environments. Furthermore, in order to account for the high degree of dynamics in soil behavior we consider soil as non-homogeneous and account for its degree of compaction. By incorporating soil mechanical formulations in our model and considering several physically plausible parameters the presented method allows for the simulation of soil as the material empirically investigated by civil engineers and soil mechanicians for decades.","PeriodicalId":446363,"journal":{"name":"Workshop on Virtual Reality Interactions and Physical Simulations","volume":"54 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114635176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1900-01-01DOI: 10.2312/PE/vriphys/vriphys07/059-068
H. Cords
This paper presents a rapid method to render dynamic water surfaces with penetrating obstacles in real-time. Taking the surface boundary into account, our method allows the rendering of single reflections and single refractions of objects even intersecting the water surface, including a physically approximative perspective refraction mapping. Thereby, water surfaces are represented as 2.5D height fields and obstacles as polygonal objects. In principle, we determine approximating virtual reflection and refraction eye coordinates. With respect to the water surface, the reflected and refracted objects and parts of objects are projected onto the surface from separate, virtual eye coordinates. Since we are using per-pixel reflection and refraction mapping, our multi-pass, image-based technique is suitable for GPU-based implementations. Moreover, we demonstrate the interactive application of the method for height field based data sets extracted from interactive 3D Smoothed Particle Hydrodynamics (SPH) simulations in real-time. Thereby, the presented approach achieves high frame rates and plausible results.
{"title":"Refraction of Water Surface Intersecting Objects in Interactive Environments","authors":"H. Cords","doi":"10.2312/PE/vriphys/vriphys07/059-068","DOIUrl":"https://doi.org/10.2312/PE/vriphys/vriphys07/059-068","url":null,"abstract":"This paper presents a rapid method to render dynamic water surfaces with penetrating obstacles in real-time. Taking the surface boundary into account, our method allows the rendering of single reflections and single refractions of objects even intersecting the water surface, including a physically approximative perspective refraction mapping. Thereby, water surfaces are represented as 2.5D height fields and obstacles as polygonal objects. In principle, we determine approximating virtual reflection and refraction eye coordinates. With respect to the water surface, the reflected and refracted objects and parts of objects are projected onto the surface from separate, virtual eye coordinates. Since we are using per-pixel reflection and refraction mapping, our multi-pass, image-based technique is suitable for GPU-based implementations. Moreover, we demonstrate the interactive application of the method for height field based data sets extracted from interactive 3D Smoothed Particle Hydrodynamics (SPH) simulations in real-time. Thereby, the presented approach achieves high frame rates and plausible results.","PeriodicalId":446363,"journal":{"name":"Workshop on Virtual Reality Interactions and Physical Simulations","volume":"739 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123324423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1900-01-01DOI: 10.2312/PE/vriphys/vriphys08/031-038
S. Pabst, S. Krzywinski, A. Schenk, B. Thomaszewski
Accurate modeling of bending behavior is one of the most important tasks in the field of cloth simulation. Bending stiffness is probably the most significant material parameter describing a given textile. Much work has been done in recent years to allow a fast and authentic reproduction of the effect of bending in cloth simulation systems. However, these approaches usually treat the textiles as consisting of a single, homogeneous material. The effects of seams, interlining and multilayer materials have not been considered so far. Recent work showed that the bending stiffness of a textile is greatly influenced by the presence of seams and that a good cloth simulation system needs to consider these effects. In this work we show how accurate modeling of bending and seams can be achieved in a state-of-the-art cloth simulation system. Our system can make use of measured bending stiffness data, but also allows intuitive user control, if desired. We verify our approach using virtual draping tests and garments in the simulation and comparing the results to their real-world counterparts. Furthermore, we provide heuristics derived from measurements that can be used to approximate the influence of several common types of seams.
{"title":"Seams and Bending in Cloth Simulation","authors":"S. Pabst, S. Krzywinski, A. Schenk, B. Thomaszewski","doi":"10.2312/PE/vriphys/vriphys08/031-038","DOIUrl":"https://doi.org/10.2312/PE/vriphys/vriphys08/031-038","url":null,"abstract":"Accurate modeling of bending behavior is one of the most important tasks in the field of cloth simulation. Bending stiffness is probably the most significant material parameter describing a given textile. Much work has been done in recent years to allow a fast and authentic reproduction of the effect of bending in cloth simulation systems. However, these approaches usually treat the textiles as consisting of a single, homogeneous material. The effects of seams, interlining and multilayer materials have not been considered so far. Recent work showed that the bending stiffness of a textile is greatly influenced by the presence of seams and that a good cloth simulation system needs to consider these effects. In this work we show how accurate modeling of bending and seams can be achieved in a state-of-the-art cloth simulation system. Our system can make use of measured bending stiffness data, but also allows intuitive user control, if desired. We verify our approach using virtual draping tests and garments in the simulation and comparing the results to their real-world counterparts. Furthermore, we provide heuristics derived from measurements that can be used to approximate the influence of several common types of seams.","PeriodicalId":446363,"journal":{"name":"Workshop on Virtual Reality Interactions and Physical Simulations","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123935310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}