首页 > 最新文献

C: Genetic modifiers最新文献

英文 中文
C03 FAN1 coding variants identified in individuals with Huntington’s disease implicate its nuclease activity and dna binding in age at onset 在亨廷顿舞蹈病个体中发现的C03 FAN1编码变异与发病年龄的核酸酶活性和dna结合有关
Pub Date : 2022-09-01 DOI: 10.1136/jnnp-2022-ehdn.47
Caroline S. Binda, Branduff McAllister, G. Menzies, Gareth Edwards, James Davies, L. Jones, Thomas H. Massey
{"title":"C03 FAN1 coding variants identified in individuals with Huntington’s disease implicate its nuclease activity and dna binding in age at onset","authors":"Caroline S. Binda, Branduff McAllister, G. Menzies, Gareth Edwards, James Davies, L. Jones, Thomas H. Massey","doi":"10.1136/jnnp-2022-ehdn.47","DOIUrl":"https://doi.org/10.1136/jnnp-2022-ehdn.47","url":null,"abstract":"","PeriodicalId":447196,"journal":{"name":"C: Genetic modifiers","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122438762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
C06 The role of FAN1 in HTT cag repeat instability and age at onset in the R6/1 mouse model of Huntington’s disease 在R6/1亨廷顿病小鼠模型中,FAN1在HTT cag重复不稳定性和发病年龄中的作用
Pub Date : 2022-09-01 DOI: 10.1136/jnnp-2022-ehdn.50
K. Fears, Caroline S. Binda, Elin Miles, Thomas H. Massey, L. Jones
{"title":"C06 The role of FAN1 in HTT cag repeat instability and age at onset in the R6/1 mouse model of Huntington’s disease","authors":"K. Fears, Caroline S. Binda, Elin Miles, Thomas H. Massey, L. Jones","doi":"10.1136/jnnp-2022-ehdn.50","DOIUrl":"https://doi.org/10.1136/jnnp-2022-ehdn.50","url":null,"abstract":"","PeriodicalId":447196,"journal":{"name":"C: Genetic modifiers","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125946579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
C08 Knockout of mismatch repair genes MLH1 and MSH3 ablates expansion of the CAG repeat in a human iPSC model of Huntington’s disease 在亨廷顿病人类iPSC模型中,敲除错配修复基因MLH1和MSH3可减少CAG重复序列的扩增
Pub Date : 2022-09-01 DOI: 10.1136/jnnp-2022-ehdn.52
Joseph Stone, Thomas H. Massey, Nicholas Allen, L. Jones
{"title":"C08 Knockout of mismatch repair genes MLH1 and MSH3 ablates expansion of the CAG repeat in a human iPSC model of Huntington’s disease","authors":"Joseph Stone, Thomas H. Massey, Nicholas Allen, L. Jones","doi":"10.1136/jnnp-2022-ehdn.52","DOIUrl":"https://doi.org/10.1136/jnnp-2022-ehdn.52","url":null,"abstract":"","PeriodicalId":447196,"journal":{"name":"C: Genetic modifiers","volume":"91 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124683509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
C10 Haplotype structure analysis of Indian Huntington’s disease patients at HTT gene locus 印度亨廷顿舞蹈病HTT基因位点C10单倍型结构分析
Pub Date : 2022-09-01 DOI: 10.1136/jnnp-2022-ehdn.54
Sowmya Devatha Venkatesh, M. Varghese, Ravikant Yadav, S. Jain, M. Purushottam
{"title":"C10 Haplotype structure analysis of Indian Huntington’s disease patients at HTT gene locus","authors":"Sowmya Devatha Venkatesh, M. Varghese, Ravikant Yadav, S. Jain, M. Purushottam","doi":"10.1136/jnnp-2022-ehdn.54","DOIUrl":"https://doi.org/10.1136/jnnp-2022-ehdn.54","url":null,"abstract":"","PeriodicalId":447196,"journal":{"name":"C: Genetic modifiers","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127260352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
C12 HTT repeat instability in family trios in the 100,000 genomes project 在100,000个基因组计划中,三家族的C12 HTT重复不稳定性
Pub Date : 2022-09-01 DOI: 10.1136/jnnp-2022-ehdn.56
Davina J. Hensman Moss, Anupriya Dalmia, Valentina Galassi Deforie, K. Ibáñez, S. Tabrizi, N. Lahiri, H. Houlden, P. Holmans, L. Jones, A. Tucci
{"title":"C12 HTT repeat instability in family trios in the 100,000 genomes project","authors":"Davina J. Hensman Moss, Anupriya Dalmia, Valentina Galassi Deforie, K. Ibáñez, S. Tabrizi, N. Lahiri, H. Houlden, P. Holmans, L. Jones, A. Tucci","doi":"10.1136/jnnp-2022-ehdn.56","DOIUrl":"https://doi.org/10.1136/jnnp-2022-ehdn.56","url":null,"abstract":"","PeriodicalId":447196,"journal":{"name":"C: Genetic modifiers","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123535615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
C11 Identifying loss-of-interruptions (LOI) in huntington disease families of Italian origin C11鉴定意大利血统亨廷顿病家族的中断缺失(LOI)
Pub Date : 2022-09-01 DOI: 10.1136/jnnp-2022-ehdn.55
Alessia Squitieri, Ludovica C Busi, Marco Di Marsico, F. Perrone, T. Mazza, R. Aiese Cigliano, F. Squitieri
{"title":"C11 Identifying loss-of-interruptions (LOI) in huntington disease families of Italian origin","authors":"Alessia Squitieri, Ludovica C Busi, Marco Di Marsico, F. Perrone, T. Mazza, R. Aiese Cigliano, F. Squitieri","doi":"10.1136/jnnp-2022-ehdn.55","DOIUrl":"https://doi.org/10.1136/jnnp-2022-ehdn.55","url":null,"abstract":"","PeriodicalId":447196,"journal":{"name":"C: Genetic modifiers","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129956353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
C07 A CRISPRI platform to assess the role of HD risk modifiers in CAG repeat expansion in iPSC derived striatal neurons C07利用CRISPRI平台评估HD风险修饰因子在诱导多能干细胞衍生纹状体神经元CAG重复扩增中的作用
Pub Date : 2022-09-01 DOI: 10.1136/jnnp-2022-ehdn.51
Ross Ferguson, M. Flower, S. Tabrizi
{"title":"C07 A CRISPRI platform to assess the role of HD risk modifiers in CAG repeat expansion in iPSC derived striatal neurons","authors":"Ross Ferguson, M. Flower, S. Tabrizi","doi":"10.1136/jnnp-2022-ehdn.51","DOIUrl":"https://doi.org/10.1136/jnnp-2022-ehdn.51","url":null,"abstract":"","PeriodicalId":447196,"journal":{"name":"C: Genetic modifiers","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131594232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
C05 The role of FAN1 nuclease activity and mlh1 binding in stabilisation of the cag repeat in HD-IPSC derived models C05在HD-IPSC衍生模型中,FAN1核酸酶活性和mlh1结合在cag重复序列稳定中的作用
Pub Date : 2022-09-01 DOI: 10.1136/jnnp-2022-ehdn.49
Jasmine Donaldson, Joseph Hamilton, Jessica F. Olive, R. Goold, S. Tabrizi
{"title":"C05 The role of FAN1 nuclease activity and mlh1 binding in stabilisation of the cag repeat in HD-IPSC derived models","authors":"Jasmine Donaldson, Joseph Hamilton, Jessica F. Olive, R. Goold, S. Tabrizi","doi":"10.1136/jnnp-2022-ehdn.49","DOIUrl":"https://doi.org/10.1136/jnnp-2022-ehdn.49","url":null,"abstract":"","PeriodicalId":447196,"journal":{"name":"C: Genetic modifiers","volume":"45 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132035913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Huntingtin gene CAG repeat size in patients with Lynch syndrome Lynch综合征患者亨廷顿基因CAG重复序列大小
Pub Date : 2022-05-29 DOI: 10.1101/2022.05.28.22275723
S. Gebre-Medhin, K. Dalene Skarping, A. Petersen
Patients with Lynch syndrome (LS) are prone to cancer due to heterozygous germline pathogenic variants in genes encoding DNA mismatch repair proteins MLH1, MSH2, MSH6 and PMS2. LS cancer cells exhibit deficient DNA mismatch repair and microsatellite instability due somatic inactivation of the second copy of the affected gene. To study microsatellite characteristics in non-neoplastic cells in LS we determined CAG repeat size in the huntingtin gene (HTT) microsatellite in lymphocyte DNA from LS patients with germline pathogenic variants in MLH1 (n = 11), MSH2 (n = 9), MSH6 (n = 7) and non-LS controls (n=19). Mean repeat size in LS was 19,55 CAG (MLH1), 19,39 CAG (MSH2), 18.07 CAG (MSH6), respectively compared to 18,42 CAG in controls. Standard deviation for CAG repeat size in LS was 4,183 CAG (MLH1), 5,089 CAG (MSH2), 3,075 CAG (MSH6), respectively, compared to 3,342 CAG in controls. Peak CAG repeat size in LS was 32 CAG (MLH1), 32 CAG (MSH2), 24 CAG (MSH6), respectively compared to 27 CAG in controls. Collectively, our data indicate that HTT CAG repeat size tends to be larger and more variable in individuals with LS caused by pathogenic variants in MLH1 and MSH2.
由于编码DNA错配修复蛋白MLH1、MSH2、MSH6和PMS2的基因存在杂合性种系致病变异,Lynch综合征(LS)患者容易发生癌症。由于受影响基因的第二拷贝失活,LS癌细胞表现出DNA错配修复缺陷和微卫星不稳定。为了研究LS非肿瘤性细胞的微卫星特征,我们测定了MLH1 (n= 11)、MSH2 (n= 9)、MSH6 (n= 7)和非LS对照(n=19) LS患者淋巴细胞DNA中亨廷顿蛋白基因(HTT)微卫星的CAG重复大小。LS的平均重复大小分别为19.55 CAG (MLH1)、19.39 CAG (MSH2)、18.07 CAG (MSH6),而对照组为18.42 CAG。与对照组的3342 CAG相比,LS中CAG重复序列大小的标准差分别为4183 CAG (MLH1)、5089 CAG (MSH2)、3075 CAG (MSH6)。与对照组的27 CAG相比,LS的CAG重复数峰值分别为32 CAG (MLH1)、32 CAG (MSH2)、24 CAG (MSH6)。总的来说,我们的数据表明,在MLH1和MSH2致病变异引起的LS患者中,HTT CAG重复序列的大小往往更大,变化更大。
{"title":"Huntingtin gene CAG repeat size in patients with Lynch syndrome","authors":"S. Gebre-Medhin, K. Dalene Skarping, A. Petersen","doi":"10.1101/2022.05.28.22275723","DOIUrl":"https://doi.org/10.1101/2022.05.28.22275723","url":null,"abstract":"Patients with Lynch syndrome (LS) are prone to cancer due to heterozygous germline pathogenic variants in genes encoding DNA mismatch repair proteins MLH1, MSH2, MSH6 and PMS2. LS cancer cells exhibit deficient DNA mismatch repair and microsatellite instability due somatic inactivation of the second copy of the affected gene. To study microsatellite characteristics in non-neoplastic cells in LS we determined CAG repeat size in the huntingtin gene (HTT) microsatellite in lymphocyte DNA from LS patients with germline pathogenic variants in MLH1 (n = 11), MSH2 (n = 9), MSH6 (n = 7) and non-LS controls (n=19). Mean repeat size in LS was 19,55 CAG (MLH1), 19,39 CAG (MSH2), 18.07 CAG (MSH6), respectively compared to 18,42 CAG in controls. Standard deviation for CAG repeat size in LS was 4,183 CAG (MLH1), 5,089 CAG (MSH2), 3,075 CAG (MSH6), respectively, compared to 3,342 CAG in controls. Peak CAG repeat size in LS was 32 CAG (MLH1), 32 CAG (MSH2), 24 CAG (MSH6), respectively compared to 27 CAG in controls. Collectively, our data indicate that HTT CAG repeat size tends to be larger and more variable in individuals with LS caused by pathogenic variants in MLH1 and MSH2.","PeriodicalId":447196,"journal":{"name":"C: Genetic modifiers","volume":"170 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116418559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
C04 Protein coding tandem repeat in TCERG1 modifies huntington’s disease onset TCERG1中的C04蛋白编码串联重复修饰亨廷顿病的发病
Pub Date : 2021-09-01 DOI: 10.1136/jnnp-2021-ehdn.28
S. Lobanov, Branduff McAllister, M. McDade-Kumar, Jong-Min Lee, M. MacDonald, J. Gusella, M. Ryten, N. Williams, P. Holmans, Thomas H. Massey, L. Jones
Background The length of the HTT CAG repeat explains around 60% of the variance in Huntington’s disease (HD) age at onset. Recently, genome-wide association studies (GWAS) of HD age at onset have identified multiple single nucleotide variants (SNVs) that influence onset, including an intronic SNV, rs79727797, in TCERG1 (p=3.76E-10). Aims Since the SNV does not modify the protein or appear to change gene expression, we tested whether the GWAS signal is due to genetic variation not present in the GWAS. Methods/Techniques We developed a novel method for calling perfect and imperfect short tandem repeats from whole exome sequencing (WES) data, and applied it to 610 WES samples from HD individuals with age at onset or cognitive test data discrepant from those predicted by their HTT CAG length. We identified an exonic (CAGGCC)n short tandem repeat in TCERG1 previously reported to be associated with altered HD age at onset. The reference allele is (CAGGCC)6. We identified 5 length alleles with 3 to 8 hexamer repeats. Results/Outcome Reduced repeat length is significantly associated with later HD age-at-onset (sum of repeat from both TCERG1 repeat alleles: p=6.51E-9). The (CAGGCC)3 allele (frequency 4.1%) is in linkage disequilibrium (r2=0.98) with the minor allele at rs79727797, associated with later onset in the GWAS. Conditioning the association of rs79727797 on TCERG1 (CAGGCC)n length reduces its significance from p=2.4E-6 to p=0.96, while STR length is still significantly associated with HD age at onset after conditioning on rs79727797 (p=3.9E-4). This indicates that the repeat, rather than rs79727797, is responsible for the association at this locus. Conclusion The GWAS signal in TCERG1 is attributable to a short tandem repeat, rather than SNVs. Further biological study of the mechanism by which it alters HD age at onset is warranted.
HTT CAG重复序列的长度解释了亨廷顿舞蹈病(HD)发病年龄差异的60%左右。最近,HD发病年龄的全基因组关联研究(GWAS)发现了多个影响发病的单核苷酸变异(SNV),包括TCERG1中的内含子SNV rs79727797 (p=3.76E-10)。由于SNV不修饰蛋白质或似乎改变基因表达,我们测试了GWAS信号是否由于GWAS中不存在的遗传变异。方法/技术我们开发了一种从全外显子组测序(WES)数据中提取完美和不完美短串联重复序列的新方法,并将其应用于来自发病年龄或认知测试数据与HTT CAG长度预测差异的HD个体的610个WES样本。我们在TCERG1中发现了一个外显子(CAGGCC)短串联重复序列,此前报道该序列与HD发病年龄改变有关。参考等位基因为(CAGGCC)6。我们鉴定出5个长度等位基因,具有3 ~ 8个六聚体重复序列。重复序列长度的减少与HD发病年龄的延迟显著相关(两个TCERG1重复序列等位基因的重复序列之和:p=6.51E-9)。(CAGGCC)3等位基因(频率4.1%)与rs79727797位点的次要等位基因存在连锁不平衡(r2=0.98),与GWAS发病晚相关。调节rs79727797对TCERG1 (CAGGCC)n长度的相关性从p=2.4E-6降低到p=0.96,而调节rs79727797后STR长度仍与发病时HD年龄显著相关(p=3.9E-4)。这表明重复序列,而不是rs79727797,负责该位点的关联。结论TCERG1的GWAS信号与短串联重复序列有关,而非snv。对其改变HD发病年龄的机制进行进一步的生物学研究是必要的。
{"title":"C04 Protein coding tandem repeat in TCERG1 modifies huntington’s disease onset","authors":"S. Lobanov, Branduff McAllister, M. McDade-Kumar, Jong-Min Lee, M. MacDonald, J. Gusella, M. Ryten, N. Williams, P. Holmans, Thomas H. Massey, L. Jones","doi":"10.1136/jnnp-2021-ehdn.28","DOIUrl":"https://doi.org/10.1136/jnnp-2021-ehdn.28","url":null,"abstract":"Background The length of the HTT CAG repeat explains around 60% of the variance in Huntington’s disease (HD) age at onset. Recently, genome-wide association studies (GWAS) of HD age at onset have identified multiple single nucleotide variants (SNVs) that influence onset, including an intronic SNV, rs79727797, in TCERG1 (p=3.76E-10). Aims Since the SNV does not modify the protein or appear to change gene expression, we tested whether the GWAS signal is due to genetic variation not present in the GWAS. Methods/Techniques We developed a novel method for calling perfect and imperfect short tandem repeats from whole exome sequencing (WES) data, and applied it to 610 WES samples from HD individuals with age at onset or cognitive test data discrepant from those predicted by their HTT CAG length. We identified an exonic (CAGGCC)n short tandem repeat in TCERG1 previously reported to be associated with altered HD age at onset. The reference allele is (CAGGCC)6. We identified 5 length alleles with 3 to 8 hexamer repeats. Results/Outcome Reduced repeat length is significantly associated with later HD age-at-onset (sum of repeat from both TCERG1 repeat alleles: p=6.51E-9). The (CAGGCC)3 allele (frequency 4.1%) is in linkage disequilibrium (r2=0.98) with the minor allele at rs79727797, associated with later onset in the GWAS. Conditioning the association of rs79727797 on TCERG1 (CAGGCC)n length reduces its significance from p=2.4E-6 to p=0.96, while STR length is still significantly associated with HD age at onset after conditioning on rs79727797 (p=3.9E-4). This indicates that the repeat, rather than rs79727797, is responsible for the association at this locus. Conclusion The GWAS signal in TCERG1 is attributable to a short tandem repeat, rather than SNVs. Further biological study of the mechanism by which it alters HD age at onset is warranted.","PeriodicalId":447196,"journal":{"name":"C: Genetic modifiers","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127068320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
C: Genetic modifiers
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1